Kurvendiskussion < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Hallo,
ich habe die Funktion
[mm] \bruch{x^3+1}{x^2-1}
[/mm]
Ich möchte nun als erstes ableiten. Aber unser Prof meinte, man sollte aufpassen, da man hier besser erst kürzt und hat dann aufgeschrieben:
[mm] \bruch{x^2-x+1}{x-1}
[/mm]
Ist das die Gleiche Funktion? Wie kommt er darauf?
|
|
|
|
Hallo,
Im Nenner steht eine Binomische Formel, und wenn du die wieder getrennt schreibst steht dann da:
$ [mm] \bruch{x^3+1}{x^2-1} [/mm] = [mm] \bruch{(x^2-x+1)*(x+1)}{(x-1)*(x+1)} [/mm] $
Im Zähler kannst du (x+1) ausklammern (wenn du wieder ausmultiplizierst siehst du, dass das Gleiche dasteht) und dann kürzen!
lg Kai
|
|
|
|