www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungKurvendiskussion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Differenzialrechnung" - Kurvendiskussion
Kurvendiskussion < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvendiskussion: Extremstellen
Status: (Frage) beantwortet Status 
Datum: 19:32 Mi 21.04.2010
Autor: freak900

Aufgabe
Hallo, ich habe ein Problem mit folgendem Beispiel. Könnt ihr mir bitte helfen? Ich soll Extrem und Wendestellen errechnen.

[mm] \bruch{x^{3}}{3} [/mm] + x² -15x+1

y' = x² + 2x-15 = 0

Jetzt habe ich x1 = 3 und x2 = -5 berechnet (stimmt laut Lösung)
Das habe ich in die Funktion eingesetzt, ergibt H(-5/59,39)
T(3/-26)
Also der höchste Punkt ist ganz oben, der Tiefpunkt unten?

nun steht aber:
y''= 2x+2
y''(3) = 8
y''(-5) = - 8

Für was brauch ich diese Zahlen?

Für den Wendpunkt nehme ich die 2te Ableitung gleich 0.
Wendpunkt = (-1/16 2/3) --> stimmt auch laut Lösungsbuch.

Nun die nächste Frage:
Ich soll nun y=kx+d errechnen;  
Aber von was? Ich habe hier ja keine Gerade, oder habe ich was übersehen?



danke!

        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:38 Mi 21.04.2010
Autor: Adamantin


> Hallo, ich habe ein Problem mit folgendem Beispiel. Könnt
> ihr mir bitte helfen? Ich soll Extrem und Wendestellen
> errechnen.
>
> [mm]\bruch{x^{3}}{3}[/mm] + x² -15x+1
>  
> y' = x² + 2x-15 = 0
>  
> Jetzt habe ich x1 = 3 und x2 = -5 berechnet (stimmt laut
> Lösung)
>  Das habe ich in die Funktion eingesetzt, ergibt
> H(-5/59,39)
>  T(3/-26)
>  Also der höchste Punkt ist ganz oben, der Tiefpunkt
> unten?
>  
> nun steht aber:
> y''= 2x+2
>  y''(3) = 8
>  y''(-5) = - 8
>
> Für was brauch ich diese Zahlen?

Du solltest wissen, dass die Bedingung f'(x)=0 für ein Extrema notwendig aber nicht hinreichend/ausreichend ist. f'(x)=0 bedeutet nur, dort könnte eine Extremstelle sein, aber auch ein Sattelpunkt hätte f'(x)=0. Daher musst du mit der zweiten Ableitung f''(x) überprüfen, ob eine Steigung in der ersten Ableitung vorliegt und deshalb muss gelten f''(x) [mm] \isnot [/mm] 0, damit du sicher eine Extremstelle hast. Demnach bedeutet f''(3)=8>0, dass bei x=3 ein TP vorliegt und umgekerht für -5

>  
> Für den Wendpunkt nehme ich die 2te Ableitung gleich 0.
>  Wendpunkt = (-1/16 2/3) --> stimmt auch laut

> Lösungsbuch.

guut.

>  
> Nun die nächste Frage:
> Ich soll nun y=kx+d errechnen;  
> Aber von was? Ich habe hier ja keine Gerade, oder habe ich
> was übersehen?

Damit kann ich so auch nichts anfangen. Gib doch mal den genauen Aufgabenlaut wieder. Wieso solltest du von einer Funktion dritten Grades irgendetwas lineares berechnen? Du sollst da bestimmt was anderes tun

>  
>
>
> danke!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]