Kurvendiskussion < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:59 Mo 20.06.2011 | Autor: | Bodo0686 |
Aufgabe | Gegeben sei die Funktionenschar [mm] $f_k [/mm] (k>0)$ mit [mm] $f_k(x)= k\cdot e^{-k\cdot x^2}$\\
[/mm]
[mm] \\
[/mm]
a) Der Graph der Ableitung [mm] $f_k'$ [/mm] ist punktsymmetrisch zum Ursprung. Dies ist mit und ohne Rechnung zu begründen.
b) Untersuche, wie sich mit wachsendem $k$ der Graph von [mm] $f_k$ [/mm] verändert. Beschreibe und [mm] begründe!\\
[/mm]
c) Bestimme die lokalen Extrema von [mm] $f_k$ [/mm] und bestätige das Ergebnis ohne Rückgriff auf die [mm] Ableitung.\\ [/mm] |
Hallo, kann mir jemand sagen, ob meine Ideen so richtig sind?
[mm] \\
[/mm]
Gegeben sei die Funktionenschar [mm] $f_k [/mm] (k>0)$ mit [mm] $f_k(x)= k\cdot e^{-k\cdot x^2}$\\
[/mm]
[mm] \\
[/mm]
a) Zu einer gelungenen Kurvendiskussion gehören Elemente, in denen sich algebraische und geometrische Denkweisen begegnen. Hier hat man ein typisches Beispiel: Die algebraische Sicht hat die definierende Beziehung $f(-x)=-f(x)$ im Blick, die zu verifizieren ist, während man aus geometrischer Sicht etwa argumentieren kann, dass wegen der Achsensymmetrie des Ausgangsgraphen Punkte mit dem selben Abstand zum Nullpunkt bis auf Vorzeichen dieselbe Steigung [mm] haben.\\
[/mm]
[mm] \\
[/mm]
b) Diese Frage kann mit dem dynamischen Funktionenplotter experimentell erkundet werden mit dem Ergebnis, dass der Graph [mm] $f_k$ [/mm] mit wachsendem $k$ steiler und zugleich gestauchter wird. Eine qualitative Begründung könnte so aussehen: Die Umformung des Funktionsterms zu [mm] $f_k(x)=k\cdot e^{-(\sqrt{k}\cdot x)^2}$ [/mm] zeigt, dass die Gaussche Glockenkurve [mm] $y=e^{-k^2}$ [/mm] mit wachsendem $k$ längs der y-Achse mit dem Faktor $k$ gestreckt wird und ebenso längs der x-Achse mit dem Faktor [mm] $\sqrt{k}$.\\
[/mm]
[mm] \\
[/mm]
c) Auf die übliche Weise gelangt man zu dem einzigen Hochpunkt $H(0|k)$. Ein lokales Minimum kann es aus Monotoniegründen nicht geben. Die Forderung, das Ergebnis ohne das Ableitungskalkül zu begründen, verlangt ein begriffliches Verständis der lokalen Extrema. Dass alle Funktionswerte lokal um [mm] $x_0=0$ [/mm] herum größer sind als [mm] $f_k(0)$, [/mm] ist leicht aus dem Funktionsterm zu begründen.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:13 Di 21.06.2011 | Autor: | rammy |
Also zu den Unterpunkten:
a) Ist korrekt, denn die Punktsymmetrie folgt aus: f(-x)=-f(x) (trifft meist bei ungeraden Polynomfunktionen zu...)
b) Mit einem Funktionsplotter betrachten, wie du es bereits gesagt hast, oder du weißt, dass "k" der Streckungsfaktor bzgl. der y-Achse ist und [mm] \wurzel{k} [/mm] der Faktor auf der x-Achse ist.
Also ist b) auch korrekt :)
c) Sehr gut.
LG
R
|
|
|
|