www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationKurvendiskussion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Differentiation" - Kurvendiskussion
Kurvendiskussion < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:56 So 04.03.2012
Autor: Trivial_

Aufgabe
Führen Sie bei der Funktion f(x)= [mm] x^{2} [/mm] * [mm] e^{-1/x^2} [/mm] mit f(0)= 0 eine Kurvendiskussion durch.
Bestimmen Sie also Nullstellen, lokale (globale) Extrema, auf welchen Teilintervallen die Funktion (streng) monoton fallend bzw. wachsend ist, Wendepunkte. Bestimmen Sie auch auf welchen Teilintervallen die Funktion konex bzw. konkav ist!

Ich habe bei der ersten Ableitung schon einen Hänger, dieses [mm] e^{- 1/x^2} [/mm] bereitet mir Kopfschmerzen. Ich weiß nicht mal ansatzweise wie ich ableiten kann. Der Rest der Fragestellung wäre kein Problem, bis auf konvex und konkav ich habe meine Skripten und Bücher schon durchgeschaut aber ich finde nichts dazu. Wenn mir jemand vl kurz erklären könnte wie ich zeige das die Funktion konvex oder konkav ist.
Vielen vielen Dank schon im Voraus

        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:08 So 04.03.2012
Autor: MathePower

Hallo Trivial_,

> Führen Sie bei der Funktion f(x)= [mm]x^{2}[/mm] * [mm]e^{-1/x^2}[/mm] mit
> f(0)= 0 eine Kurvendiskussion durch.
>  Bestimmen Sie also Nullstellen, lokale (globale) Extrema,
> auf welchen Teilintervallen die Funktion (streng) monoton
> fallend bzw. wachsend ist, Wendepunkte. Bestimmen Sie auch
> auf welchen Teilintervallen die Funktion konex bzw. konkav
> ist!
>  Ich habe bei der ersten Ableitung schon einen Hänger,
> dieses [mm]e^{- 1/x^2}[/mm] bereitet mir Kopfschmerzen. Ich weiß
> nicht mal ansatzweise wie ich ableiten kann. Der Rest der


Für diese Funktion benutzt Du erstmal die Kettenregel.

Für die innere Ableitung benutzt Du dann die Potenzregel.


> Fragestellung wäre kein Problem, bis auf konvex und konkav
> ich habe meine Skripten und Bücher schon durchgeschaut
> aber ich finde nichts dazu. Wenn mir jemand vl kurz
> erklären könnte wie ich zeige das die Funktion konvex
> oder konkav ist.


Konvex ist eine Funktion, wenn [mm]f''\left(x\right) \ge 0[/mm] gilt.
Konkav ist eine Funktion, wenn [mm]f''\left(x\right) \le 0[/mm] gilt.


>  Vielen vielen Dank schon im Voraus


Gruss
MathePower

Bezug
                
Bezug
Kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:13 So 04.03.2012
Autor: Trivial_

ich verstehe nur nicht wie ich [mm] e^{1/x^2} [/mm] ableite, wurde ^2 stehen würde ich es wissen oder [mm] ^x^2. [/mm]

Bezug
                        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:26 So 04.03.2012
Autor: Steffi21

Hallo

wie schon gesagt, benutze die Kettenregel

[mm] \bruch{2}{x^3}*e^{-\bruch{1}{x^2}} [/mm]

der Faktor [mm] \bruch{2}{x^3} [/mm] entsteht durch die Ableitung des Exponenten [mm] -\bruch{1}{x^2} [/mm]

Steffi

Bezug
                
Bezug
Kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:01 So 04.03.2012
Autor: Trivial_

ich habe jetzt für die erste ableitung

[mm] 2*x*e^{-1/x^2} [/mm] - [mm] x^2/2x*e^{-1/x^2} [/mm]

kann das jetzt stimmen?!

Vielen Dank und lG


Bezug
                        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:18 So 04.03.2012
Autor: MathePower

Hallo Trivial_,

> ich habe jetzt für die erste ableitung
>
> [mm]2*x*e^{-1/x^2}[/mm] - [mm]x^2/2x*e^{-1/x^2}[/mm]

>


Hier muss es doch lauten:

[mm]2*x*e^{-1/x^2} \blue{+} x^2*\red{\bruch{2}{x^{3}}}*e^{-1/x^2}[/mm]


> kann das jetzt stimmen?!

>

> Vielen Dank und lG
>  


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]