www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisKurvendiskussion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Schul-Analysis" - Kurvendiskussion
Kurvendiskussion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvendiskussion: Frage
Status: (Frage) beantwortet Status 
Datum: 10:24 Sa 10.09.2005
Autor: NacysLuv

Mal wieder bereitet mir meine Hausaufgabe Probleme.
Wir haben letztes Jahr zwar sehr häufig Kurvendiskussionen zu ganzrationalen Funktionen gemacht, jedoch komme ich mit meiner jetzigen Funktion überhaupt nicht zurecht. Da ich denke, dass das für viele hier sehr einfach ist, hoffe ich, dass mir wieder einmal jemand helfen kann!

Die Funktion lautet: [mm] f(x)=2x^4+7x^3+5x^2 [/mm]

Die Ableitungen sind selbst für mich nicht schwer ;)
f'(x) = [mm] 8x^3+21x^2+10x [/mm]
[mm] f''(x)=24x^2+42x+10 [/mm]
f'''(x)= 48x + 42

So. Die Symmetrie war auch noch kein Problem. Das kommt erst bei den
Nullstellen
Extremwerten
Wendepunkten

Egal was ich probiere, nichts funktioniert. Muss ich da nun Polynomdivision anwenden? Denn irgendwie kann ich dann ja nur durch x teilen...
Ausklammern funktioniert auch nicht wirklich, zumindest bei mir nicht.

Ich wäre euch für jegliche Art von Hilfe sehr dankbar!!!

        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 10:37 Sa 10.09.2005
Autor: AT-Colt

Hallo NacysLuv,

Du willst also die Nullstellen der genannten Polynome finden?

Ich denke mal, die Nullstellen von f'' und f''' solltest Du mit der pq-Formel hinbekommen, sicherheitshalber:

Für die Gleichung $0 = [mm] a*x^2 [/mm] +b*x +c$ mit $a [mm] \not= [/mm] 0$ ist $0 = [mm] x^2 +\bruch{b}{a}x +\bruch{c}{a}$ [/mm] ein äquivalentes Problem (hat also dieselben Lösungen). Sei [mm] $p:=\bruch{b}{a}$ [/mm] und [mm] $q:=\bruch{c}{a}$. [/mm] Dann hat das Problem die Lösungen:

[mm] $x_{1,2} [/mm] = [mm] -\bruch{p}{2} \pm \wurzel{\left(\bruch{p}{2}\right)^2-q}$ [/mm]

Nun wenden wir uns f und f' zu:
In diesem Fall ist Polynomdivision, als würdest Du mit Kanonen auf Spatzen schießen.

Du kannst einfach Potenzen von x ausklammern, denn es gilt:
$a*x = 0 [mm] \gdw [/mm] a = 0$ oder $x=0$

Schau mal, ob Du jetzt etwas weiter kommst ^^

greetz

AT-Colt

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]