www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationKurvenintegral Kegeldeckfläche
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integration" - Kurvenintegral Kegeldeckfläche
Kurvenintegral Kegeldeckfläche < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvenintegral Kegeldeckfläche: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:22 Do 24.04.2014
Autor: racy90

Hallo

Ich habe  folgenden Kegel  K={ (x,y,z): [mm] x^2+y^2 \le z^2 [/mm] ,0 [mm] \le [/mm] z [mm] \le [/mm] 1 }
und das Vektorfeld [mm] v=\vektor{y \\ z \\ x} [/mm] gegeben.

Ich soll nun das Kurvenintegral [mm] \integral_{C}^{}{v dx} [/mm] berechnen wobei C die Kurve bezeichnet welche die Deckfläche von K berandet.

Die Deckfläche ist ja ein Kreis mit Radius 1 und bei z=1

also müsste meine Parametrisierung lauten [mm] x=\vektor{cos(x) \\ sin(x) \\ 1} [/mm]
[mm] x'=\vektor{-sin(x) \\ cos(x) \\ 0} [/mm]

x einsetzen in v liefert mir folgendes Ergebnis [mm] \vektor{sin(x) \\ 1 \\ cos(x)} [/mm]

Nun das Integral : [mm] \integral_{0}^{2 \pi}{\vektor{sin(x) \\ 1 \\ cos(x)}\vektor{-sin(x) \\ cos(x) \\ 0} dx} [/mm]


        
Bezug
Kurvenintegral Kegeldeckfläche: Antwort
Status: (Antwort) fertig Status 
Datum: 15:59 Do 24.04.2014
Autor: leduart

Hallo
Deine Bezeichnungen sind sehr irritierend!
du kannst doch x nicht doppelt verwenden, oder gar dreifach
a) als Ortsvektor, b) als Komponente von a) c) als Parameter.
also nimm als Parameter t
dein C: [mm] c(t)=\vektor{cos(t)\\ sin(t),1) dein Vektorfeld eingesetzt ist mit deinen Bezeichnungen richtig, nur msste man dx=c'(t)dt setzen. nun das Skalarprodukt ausführen und dann integrieren }was [/mm] genau ist deine Frage?
Gruss leduart

Bezug
                
Bezug
Kurvenintegral Kegeldeckfläche: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:25 Do 24.04.2014
Autor: racy90

Gut dann halt so:

[mm] c(t)=\vektor{cos(t) \\ sin(t) \\ 1} [/mm]
[mm] c'(t)=\vektor{-sin(t) \\ cos(t)\\0} [/mm]

c  in v --> [mm] \vektor{sin(t) \\ 1 \\ cos(t)} [/mm]

[mm] \integral_{0}^{2 \pi}{\vektor{sin(t) \\ 1 \\ cos(t)}\vektor{-sin(t) \\ cos(t)\\0} dx} [/mm] = [mm] \integral_{0}^{2 \pi}{-sin^2(t)+cos(t) dx} [/mm]

Ergebnis nach etwas rechnen = - [mm] \pi [/mm]

Stimmt das Ergebnis?





Bezug
                        
Bezug
Kurvenintegral Kegeldeckfläche: Antwort
Status: (Antwort) fertig Status 
Datum: 16:40 Do 24.04.2014
Autor: leduart

Hallo
richtig, im letzten Integral dt statt dx
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]