www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenKurvenintegral in Kugelkoordin
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - Kurvenintegral in Kugelkoordin
Kurvenintegral in Kugelkoordin < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvenintegral in Kugelkoordin: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:49 So 07.12.2008
Autor: XPatrickX

Hallo, ich muss ein Kurvenintegral berechnen. Dazu habe ich Anfangs- und Endpunkt gegeben: [mm] \{r_1=R, \phi_1=\pi , \theta_1=\frac{\pi}{2} \} [/mm] und [mm] \{r_2=3R, \phi_2=\frac{\pi}{2} , \theta_2=\frac{\pi}{2} \} [/mm]

Als Vekorfeld habe ich die Gravitationskraft gegeben: [mm] F=-GmM*\frac{\vec{r}}{r^3}=-GmM*\frac{\vec{e_r}}{r^2} [/mm]

Wie kann ich nun das Kurvenintegral über den kürzesten Weg ausrechnen? In kartesischen Koordinaten würde ich jetzt eine Geradengleichung durch die beiden Punkte aufstellen. Aber das kann ich ja jetzt nicht so einfach machen.
Umrechnen in kart. Koord. bringt mich auch nicht weiter, da ich nicht weiß wie dann die Gewichtskraft aussieht. Diese hängt ja auf jeden Fall nur von der 1. Komponente (dem Radius) ab.

Danke
Gruß Patrick

        
Bezug
Kurvenintegral in Kugelkoordin: Idee
Status: (Antwort) fertig Status 
Datum: 20:04 Mo 08.12.2008
Autor: MathePower

Hallo PatrickX,


> Hallo, ich muss ein Kurvenintegral berechnen. Dazu habe ich
> Anfangs- und Endpunkt gegeben: [mm]\{r_1=R, \phi_1=\pi , \theta_1=\frac{\pi}{2} \}[/mm]
> und [mm]\{r_2=3R, \phi_2=\frac{\pi}{2} , \theta_2=\frac{\pi}{2} \}[/mm]
>  
> Als Vekorfeld habe ich die Gravitationskraft gegeben:
> [mm]F=-GmM*\frac{\vec{r}}{r^3}=-GmM*\frac{\vec{e_r}}{r^2}[/mm]


Ist [mm]\overrightarrow{r}=\pmat{x \\ y \\ z}[/mm]

mit

[mm]x=r*\cos\left(\phi\right)\cos\left(\theta\right)[/mm],

[mm]y=r*\sin\left(\phi\right)\cos\left(\theta\right)[/mm],

[mm]z=r*\sin\left(\theta\right)[/mm],

dann berechne

[mm]\overrightarrow{r} \* \pmat{dx \\ dy \\ dz}[/mm]

,wobei

[mm]dx=\bruch{\partial x}{\partial r} \ dr + \bruch{\partial x}{\partial \phi} \ d\phi + \bruch{\partial x}{\partial \theta} \ d\theta[/mm]

[mm]dy=\bruch{\partial y}{\partial r} \ dr + \bruch{\partial y}{\partial \phi} \ d\phi + \bruch{\partial y}{\partial \theta} \ d\theta[/mm]

[mm]dz=\bruch{\partial z}{\partial r} \ dr + \bruch{\partial z}{\partial \phi} \ d\phi + \bruch{\partial z}{\partial \theta} \ d\theta[/mm]


>  
> Wie kann ich nun das Kurvenintegral über den kürzesten Weg
> ausrechnen? In kartesischen Koordinaten würde ich jetzt
> eine Geradengleichung durch die beiden Punkte aufstellen.
> Aber das kann ich ja jetzt nicht so einfach machen.
> Umrechnen in kart. Koord. bringt mich auch nicht weiter, da
> ich nicht weiß wie dann die Gewichtskraft aussieht. Diese
> hängt ja auf jeden Fall nur von der 1. Komponente (dem
> Radius) ab.
>
> Danke
> Gruß Patrick


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]