www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungKurvenschar
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differenzialrechnung" - Kurvenschar
Kurvenschar < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvenschar: Tipp
Status: (Frage) beantwortet Status 
Datum: 00:07 Mi 07.06.2006
Autor: Teufel

Aufgabe
  [mm] f_{t}(x)=x³-3t²x [/mm] ; t [mm] \ge0 [/mm]

...
c) Für welchen Wert von t liegen die Extrempunkte auf der 2. Winkelhalbierenden?

Hiho Leute.

Ich habe die Aufgabe schon gelöst, aber meine Lehrerin hat gesagt, dass ich mir das zu kompliziert gemacht habe.

Die 2. Winkelhalbierende ist natürlich y=-x.
Dann habe ich die Ortskurve der Extrempunkte bestimmt (y=-2x³) und mit y=-x gleichgesetzt (-x=-2x³).
Vorher habe ich schon rausbekommen, dass x=t (weil die Extrempunkte für positive x-Werte bei E(t|-2t³) liegen) gilt und für x t eingesetzt (-t=-2t³), und nach einiger Umstellerei bin ich auf t=0  [mm] \wedge [/mm] t= [mm] \pm \wurzel{ \bruch{1}{2}}, [/mm] wobei man [mm] -\wurzel{ \bruch{1}{2}} [/mm] vernachlässigen kann, da t [mm] \ge0 [/mm] gelten muss.

So viel zu meiner Lösung.

Und ich wollte fragen, wie man das ganz einfach lösen könnte!
Vielen Dank.

        
Bezug
Kurvenschar: Antwort
Status: (Antwort) fertig Status 
Datum: 01:09 Mi 07.06.2006
Autor: leduart

Hallo Teufel
>  [mm]f_{t}(x)=x³-3t²x[/mm] ; t [mm]\ge0[/mm]
>  
> ...
>  c) Für welchen Wert von t liegen die Extrempunkte auf der
> 2. Winkelhalbierenden?
>  

> Die 2. Winkelhalbierende ist natürlich y=-x.
>  Dann habe ich die Ortskurve der Extrempunkte bestimmt
> (y=-2x³) und mit y=-x gleichgesetzt (-x=-2x³).

unnötig aber richtig

> Vorher habe ich schon rausbekommen, dass x=t (weil die
> Extrempunkte für positive x-Werte bei E(t|-2t³) liegen)

sobald du das wusstest, konntest du doch die t-Werte sucen so dass x=t,y=-t
also [mm] -t=t^{3}-3t^{3} [/mm]
Und damit auch deine Lösung.
(t=0 ist keine, weil da kein Extremwert, sondern Wendepkt mit waagerechter Tangente)
Ist das einfacher? Aber besser ein SELBSTÄNDIGER richtiger Weg als immer der einfachste!
Gruss leduart


Bezug
        
Bezug
Kurvenschar: kleine "Spitzfindigkeit"
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:45 Mi 07.06.2006
Autor: ardik

Hallo Teufel,

eine kleine "Spitzfindigkeit":

> [mm]t=0 \wedge t= \pm \wurzel{ \bruch{1}{2}}[/mm]

Dazwischen gehört natürlich ein "oder" [mm] $\vee$ [/mm] ...

Ansonsten finde ich: gut gedacht, auch wenn's eigentlich zu kompliziert war!
Da stimme ich leduart voll zu!

Schöne Grüße,
ardik


Bezug
                
Bezug
Kurvenschar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:28 Mi 07.06.2006
Autor: Teufel

Super, danke Leute :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]