www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenL-Stetigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - L-Stetigkeit
L-Stetigkeit < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

L-Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:01 Sa 06.09.2008
Autor: Pondy

Hallo,

ich habe mal eine Grundlegende Frage.
Ich habe eine L-stetige r-mal stetig differenzierbare vektorwertige Funktion  f(t,x(t)).
D.h. [mm] \parallel f(t,x(t))-f(t,y(t))\parallel \le L\parallel x(t)-y(t)\parallel. [/mm]
Kann man daraus jetzt eine Abschätzung irgendwelcher Ableitungen nach oben unter Verwendung von L schließen?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Danke schonmal.

        
Bezug
L-Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 19:40 Sa 06.09.2008
Autor: Gonozal_IX

Huhu,

schau dir doch mal die Definition der Differenzierbarkeit an (Differenzenquotienten etc) und versuche dann mal die Ableitung durch L abzuschätzen.

MfG,
Gono.

Bezug
                
Bezug
L-Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:03 Sa 06.09.2008
Autor: Pondy

Ich hab mir überlegt:
[mm] \limes_{y\rightarrow x}\bruch{\parallel f(t,x)-f(t,y)\parallel}{\parallel x-y\parallel}=\parallel f'(t,x)\parallel [/mm] und da [mm] \parallel f(t,x)-f(t,y)\parallel\le L\parallel x-y\parallel [/mm] müsste gelten [mm] \parallel f'(t,x)\parallel\le [/mm] L.
Aber gilt das? x und y sind ja Funktionen und welche Norm muss ich für [mm] \parallel f'(t,x)\parallel [/mm] nehmen? f'(t,x) ist ja ne Matrix?

Bezug
                        
Bezug
L-Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 09:18 So 07.09.2008
Autor: Merle23


> Ich hab mir überlegt:
>  [mm]\limes_{y\rightarrow x}\bruch{\parallel f(t,x)-f(t,y)\parallel}{\parallel x-y\parallel}=\parallel f'(t,x)\parallel[/mm]
> und da [mm]\parallel f(t,x)-f(t,y)\parallel\le L\parallel x-y\parallel[/mm]
> müsste gelten [mm]\parallel f'(t,x)\parallel\le[/mm] L.
>  Aber gilt das? x und y sind ja Funktionen und welche Norm
> muss ich für [mm]\parallel f'(t,x)\parallel[/mm] nehmen? f'(t,x) ist
> ja ne Matrix?

Wenn eine Funktion in einem Punkte partiell differenzierbar ist, dann ist sie dort auch lokal L-stetig. Als L-Konstante kann man jede Zahl größer-gleich dem Maximum der Norm der Ableitung in der entsprechenden Umgebung des Punktes nehmen.

Deine Abschätzung ist also an sich richtig (bis auf den nächsten Punkt), nur würde ich vorher noch mit der direkten Definition der Differenzierbarkeit anfangen und erst dann überall die Normen draufwerfen auf die Gleichung.

x und y sind zwar Funktionen, aber du müsstest auch in der Rechnung immer x(t) und y(t) schreiben - und das sind dann Vektoren.

Bei den Normen müsstest du dieselbe nehmen, die du für die L-Abschätzung benutzt hast. Bei der Matrixnorm wahrscheinlich die, die von dieser Vektornorm induziert wird.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]