LEPS Pot. E. Oberflächen < HochschulPhysik < Physik < Naturwiss. < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 18:52 Do 21.03.2013 | Autor: | Bangada |
Aufgabe | Eine weit verbreitete LEPS (London-Eyring-Polanyi-Sato) Funktion ist die für die [mm] F+H_2 [/mm] -> FH + H potentielle Energieoberfläche (P.A. Whitlock and J.T. Muckermann, J. Chem. Phys. 61 , 4624 (1974).
Die dazugehörigen Parameter sind:
[mm] D_{FH}=591.1 [/mm] kJ/mol
[mm] D_{HH}=458.2 [/mm] kJ/mol
[mm] \beta_{FH}=2.2189 Angstrom^{-1}
[/mm]
[mm] \beta_{HH}=1.9420 Angstrom^{-1}
[/mm]
[mm] r^0_{FH}=0.917 [/mm] Angstrom
[mm] r^0_{HH}=0.7419 [/mm] Angstrom
[mm] S_{FH}=0.167
[/mm]
[mm] S_{HH}=0.106
[/mm]
Erstelle mit diesen Parametern und den folgenden frei Gleichungen ein Konturdiagramm für die [mm] F+H_2 [/mm] -> FH + H Reaktion.
1) [mm] V(r_{AB},r_{AC},r_{BC})= \bruch{Q_{AB}}{1+S_{AB}} [/mm] + [mm] \bruch{Q_{BC}}{1+S_{BC}} [/mm] + [mm] \bruch{Q_{AC}}{1+S_{AC}} [/mm] - [mm] (\bruch{1}{2} [(\bruch{J_{AB}}{1+S_{AB}}-\bruch{J_{BC}}{1+S_{BC}})^2+(\bruch{J_{BC}}{1+S_{BC}}-\bruch{J_{AC}}{1+S_{AC}})^2+(\bruch{J_{AC}}{1+S_{AC}}-\bruch{J_{AB}}{1+S_{AB}})^2])^{\bruch{1}{2}}
[/mm]
2) [mm] Q_{AB} [/mm] + [mm] J_{AB} [/mm] = [mm] D_{AB} e^{-2\beta_{AB}(r_{AB}-r^0_{AB})}-2e^{-\beta_{AB}(r_{AB}-r^0_{AB})}
[/mm]
3) [mm] Q_{AB} [/mm] - [mm] J_{AB} [/mm] = [mm] \bruch{1}{2} D_{AB} e^{-2\beta_{AB}(r_{AB}-r^0_{AB})}+2e^{-\beta_{AB}(r_{AB}-r^0_{AB})}
[/mm]
Berechne und stelle den Plot anschließend dar für:
[mm] r_{FH}=\infty, r_{HH}=\infty, r_{FH}=r^0_{FH}, r_{HH}=r^0_{HH} [/mm] |
Guten Tag liebe Community,
Ich sitze gerade vor dieser Aufgabe und habe große Schwierigkeiten erste Schritte zu tun. Wir betrachten die LEPS Funktion mit Q als Coulomb-, J als Austausch- und S als Überlappintegral, wobei Q und J durch 2) und 3), der Morse und anti-Morse Funktion ausgedrückt werden.
Ich habe Schwierigkeiten damit einen vernünftigen Ausdruck zu erstellen, mit dem ich eine Konturkarte erstellen könnte.
Vielleicht ist das Ganze auch gar nicht so kompliziert, nur die Gleichungen lassen sich nicht einfach handhaben.
[Ich werde an dieser Stelle meinen neuesten Fortschritt nachtragen]
Also als erstes habe ich bei 1) angefangen und die Quadrate in der Klammer ausmultipliziert und das 0,5 mit einbezogen, mit [mm] \bruch{Q_{AB}}{1+S_{AB}} [/mm] + [mm] \bruch{Q_{BC}}{1+S_{BC}} [/mm] + [mm] \bruch{Q_{AC}}{1+S_{AC}} [/mm] = A ergibt sich:
[mm] V(r_{AB},r_{AC},r_{BC})= [/mm] A - [mm] (\bruch{J^2_{AB}}{(1+S_{AB})^2}+\bruch{J^2_{BC}}{(1+S_{BC})^2}+\bruch{J^2_{AC}}{(1+S_{AC})^2}-\bruch{J_{AC}J_{AB}}{(1+S_{BC})(1+S_{AB})}-\bruch{J_{BC}J_{AC}}{(1+S_{BC})(1+S_{AC})}-\bruch{J_{AC}J_{AB}}{(1+S_{AC})(1+S_{AB})})^{\bruch{1}{2}}
[/mm]
Möglichkeit a) Muss ich an dieser Stelle die komplette Klammer auf einen gemeinsamen Nenner bringen? Ist dies der Fall ergibt sich, mit den Vereinfachungen [mm] (1+S_{AB})=x, [/mm] index x=AB, [mm] (1+S_{BC})=y, [/mm] index y=BC, [mm] (1+S_{AC})=z, [/mm] index z=AC:
[mm] V(r_{AB},r_{AC},r_{BC})= [/mm] A - [mm] (\bruch{J^2_xx^2y^4z^4+J^2_yx^4y^2z^4+J^2_zx^4y^4z^2-J_xJ_zx^3y^4z^3-J_yJ_zx^4y^3z^3-J_xJ_yx^3y^3z^4}{x^4y^4z^4})^{\bruch{1}{2}}
[/mm]
An dieser Stelle könnte man nun den Nenner, sowie aus jedem Term [mm] x^2y^2z^2 [/mm] ausklammern und ebenfalls aus der Wurzel bewegen zu:
[mm] V(r_{AB},r_{AC},r_{BC})= [/mm] A - [mm] \bruch{1}{xyz} (J^2_xy^2z^2+J^2_yx^2z^2+J^2_zx^2y^2-J_xJ_zxy^2z-J_yJ_zx^2yz-J_xJ_yxyz^2)^{\bruch{1}{2}}
[/mm]
Was wäre der nächste Schritt? Ich glaube ich verlaufe mich hier ein wenig.
Möglichkeit b) Betrachtet man den Körper des Wurzelterms mit [mm] \bruch{J^2_{AB}}{(1+S_{AB})^2}=a^2, \bruch{J^2_{BC}}{(1+S_{BC})^2}=b^2 [/mm] und [mm] \bruch{J^2_{AC}}{(1+S_{AC})^2}=c^2, [/mm] ergibt sich:
[mm] (a^2+b^2+c^2-ab-bc-ac)^{\bruch{1}{2}} [/mm]
Dieser Körper erinnert stark an ein Trinom [mm] (a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ac [/mm] oder [mm] (a-b-c)^2=a^2+b^2+c^2-2ab-2ac+2bc.
[/mm]
Dies würde auch wunderbar passen, denn dann würden sich die Potenzen wegkürzen. Übrig wären + und - Terme mit vereinzelt gleichen Nennern, die uns den gewünschten Q-J Ausdruck liefern. Aus der Logik heraus ist es klar, dass ein Ausdruck heraus kommen soll, der Q+J und Q-J enthält, sodass wir Gleichung 2) und 3) mit den restlichen Parametern ins Spiel bringen können.
Allerdings sehe ich gerade nicht wie ich [mm] (a^2+b^2+c^2-ab-bc-ac) [/mm] zu einem Trinom komprimieren könnte?! Habe ich mich in den vorherigen Schritten vertan? Bei einer Kontrolle habe ich das identische Ergebnis bekommen.
Ich bin für jeden Tipp die Gleichung in die richtige Bahn zu bringen dankbar!
Mit freundlichen Grüßen,
Bangada
P.S.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:20 Sa 23.03.2013 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|