www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeLGS /Vektorraum
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Moduln und Vektorräume" - LGS /Vektorraum
LGS /Vektorraum < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

LGS /Vektorraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:46 Sa 16.01.2010
Autor: gfb53

Aufgabe
Aufgabe 2
Zeigen Sie, dass die Lösungsmenge des reellen Gleichungssystems
5x − 3y + 21z = 0
3x + 7y + 12z = 0
x − 30y + 6z = 0
einen Vektorraum bildet. Wie viele “Freiheitsgrade” hat dieser Vektorraum?




Ich hab echt kein Ansatz wie man diese Aufgabe lösen kann, kann mir jemand vielleicht helfen?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
LGS /Vektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 12:57 Sa 16.01.2010
Autor: j3ssi

Da der Vektorraum einer Lösungsmenge gesucht ist wäre er erste Schriit erstmal das Lösen der Gleichung

also eine Umformund dieser Matrix in Zeilen Stufen Form:

[mm] \pmat{5&-3&21 \\3& 7 &12 \\ 1 & -30 & 6} =\vektor{0 \\ 0 \\ 0} [/mm]

Und dann für die Lösungsmenge die Vektorraum Bedingungen Prüfen

Bezug
                
Bezug
LGS /Vektorraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:48 So 17.01.2010
Autor: IstGeheim

Die Lösungsmenge dieses GLS ist die Lösungsmenge:

[mm] \IL [/mm] (0, 0, 0)

Ist das nicht dann der Nullvektor? Wie kann ich denn dann die Freiheitsgrade bestimmen? Ich komme mit dem Begriff, bezogen auf das gegebene Problem, nicht weiter.



Bezug
                        
Bezug
LGS /Vektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 20:53 Di 19.01.2010
Autor: angela.h.b.


> Die Lösungsmenge dieses GLS ist die Lösungsmenge:
>  
> [mm]\IL[/mm] (0, 0, 0)
>  
> Ist das nicht dann der Nullvektor? Wie kann ich denn dann
> die Freiheitsgrade bestimmen? Ich komme mit dem Begriff,
> bezogen auf das gegebene Problem, nicht weiter.
>  
>  


Hallo,

[willkommenmr].

Tja, das ist dann ein sher kleiner Untervektorraum des [mm] \IR^3. [/mm] Der kleinste.

Freiheitsgrade gibt es nicht, der VR hat die Dimension 0.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]