www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeLGS aus Funktion ermitteln
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Gleichungssysteme" - LGS aus Funktion ermitteln
LGS aus Funktion ermitteln < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

LGS aus Funktion ermitteln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:06 Mo 19.09.2011
Autor: Tobbster81

Aufgabe
Eine ganzrationalen Funktion 4. Grades geht durch den Ursprung und besitzt im Punkt W(2;0) einen Sattelpunkt. Die Tangente im Ursprung ist parallel zur Geraden mit der Gleichung y=4x+20. Stellen Sie das zur Lösung notwendige lineare Gleichungssystem auf und die erweiterte Koeffizientenmatrix für den Gauß’schen Lösungsalgorithmus. Berechnen Sie nun mit Hilfe des Gauß’schen Lösungsalgorithmus die gesuchte Funktion.

Die ganzrationale Funktion 4.Grades lautet:
[mm] f(x)=ax^4 [/mm] + [mm] bx^3 [/mm] + [mm] cx^2 [/mm] + dx +e.

Dann mache ich die die 1. und 2. Ableitung, aber weiter komme ich nicht.
Auch was es mit der Funktion y=4x+20 auf sich hat, weiss ich nicht, um ein LGS aufzustellen.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
LGS aus Funktion ermitteln: Antwort
Status: (Antwort) fertig Status 
Datum: 12:19 Mo 19.09.2011
Autor: schachuzipus

Hallo Tobbster81 und erstmal herzlich [willkommenmr],


> Eine ganzrationalen Funktion 4. Grades geht durch den
> Ursprung und besitzt im Punkt W(2;0) einen Sattelpunkt. Die
> Tangente im Ursprung ist parallel zur Geraden mit der
> Gleichung y=4x+20. Stellen Sie das zur Lösung notwendige
> lineare Gleichungssystem auf und die erweiterte
> Koeffizientenmatrix für den Gauß’schen
> Lösungsalgorithmus. Berechnen Sie nun mit Hilfe des
> Gauß’schen Lösungsalgorithmus die gesuchte Funktion.
>  Die ganzrationale Funktion 4.Grades lautet:
>  [mm]f(x)=ax^4[/mm] + [mm]bx^3[/mm] + [mm]cx^2[/mm] + dx +e. [ok]
>  
> Dann mache ich die die 1. und 2. Ableitung, aber weiter
> komme ich nicht.
>  Auch was es mit der Funktion y=4x+20 auf sich hat, weiss
> ich nicht, um ein LGS aufzustellen.

Na, du hast in der allg. Funktionsvorschrift 5 Unbekannte: [mm]a,b,c,d,e[/mm]

Du musst also aus dem Aufgabentext 5 Gleichungen "herauslesen"

1) Der Graph geht durch den Ursprung [mm]\mathcal{O}=(0,0)[/mm], also ist [mm]f(0)=0[/mm]

2) Der Punkt [mm]W=(2,0)[/mm] ist auf dem Graphen, also [mm]f(2)=0[/mm]

In [mm]W=(2,0)[/mm] ist ein Sattelpunkt, also ein Wendepunkt, in dem die Steigung 0 ist.

Das gibt dir 2 weitere Gleichungen

3) Die Steigung an der Stelle [mm]x=2[/mm] ist 0, übersetze das in eine Gleichung

4) Wie lautet die notwendige Bedingung, dass an der Stelle [mm]x=2[/mm] eine Wendestelle vorliegt? --> das gibt eine weitere Gleichung ...

Dann soll die Tangente im Ursprung parallel zur Geraden [mm]y=4x+20[/mm] sein.

Welche Steigung hat die Gerade [mm]y[/mm] denn?

Wie ist also die Steigung der zu y parallelen Tangente im Ursprung?

Und wie kann man das in eine Gleichung, also die letzte benötigte Gleichung 5) bringen?



Dann hangel dich mal durch, wenn du weitere Fragen hast, einfach fragen ;-)

>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.  

Gruß

schachuzipus


Bezug
                
Bezug
LGS aus Funktion ermitteln: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:27 Mo 19.09.2011
Autor: Tobbster81

Ich habe mich jetzt:

1. f(0)= e = 0
2. f(2) = 16a+8b+4c+2d+e = 0
3. f´(2) = 32a+12b+4c+d =0
4. f´´(2)= 48a+12b+2c =0

aber auf die 5. Gleichung komme ich nicht!!!

Bezug
                        
Bezug
LGS aus Funktion ermitteln: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:35 Mo 19.09.2011
Autor: fred97


> Ich habe mich jetzt:
>  
> 1. f(0)= e = 0
>  2. f(2) = 16a+8b+4c+2d+e = 0
>  3. f´(2) = 32a+12b+4c+d =0
>  4. f´´(2)= 48a+12b+2c =0
>  
> aber auf die 5. Gleichung komme ich nicht!!!

"Die Tangente im Ursprung ist parallel zur Geraden mit der Gleichung y=4x+20" liefert:

                    f'(0)=4

FRED


Bezug
                
Bezug
LGS aus Funktion ermitteln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:37 Mo 19.09.2011
Autor: Tobbster81

Ich habe mich jetzt:

1. f(0)= e = 0
2. f(2) = 16a+8b+4c+2d+e = 0
3. f´(2) = 32a+12b+4c+d =0
4. f´´(2)= 48a+12b+2c =0

aber auf die 5. Gleichung komme ich nicht!!!

Bezug
                        
Bezug
LGS aus Funktion ermitteln: Antwort
Status: (Antwort) fertig Status 
Datum: 13:40 Mo 19.09.2011
Autor: fred97


> Ich habe mich jetzt:
>  
> 1. f(0)= e = 0
>  2. f(2) = 16a+8b+4c+2d+e = 0
>  3. f´(2) = 32a+12b+4c+d =0
>  4. f´´(2)= 48a+12b+2c =0
>  
> aber auf die 5. Gleichung komme ich nicht!!!  

Was soll das ? Diese Frage hast Du schon mal gestellt und ich habe geantwortet:

https://matheraum.de/read?i=820988

FRED


Bezug
                                
Bezug
LGS aus Funktion ermitteln: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:54 Mo 19.09.2011
Autor: Tobbster81

sorry...war mein Fehler...bin das erste mal hier!!!
aber danke für die Antwort....hat mir geholfen

Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]