www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeLGS in Matrixform
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Gleichungssysteme" - LGS in Matrixform
LGS in Matrixform < Lineare Gleich.-sys. < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

LGS in Matrixform: Bestimmungsgleichung aufstelle
Status: (Frage) beantwortet Status 
Datum: 15:51 Di 13.03.2012
Autor: Missy19

Aufgabe
Eine zur y-Achse symmetrische ganzrationale Funtion 4.Grades hat eine Nullstelle bei Xn=2 und an der Stelle x=-1 den Steigungswert 2.
Außerdem verläuft der Graph der Funktion durch den Punkt P1(1/-6)
Stellen Sie die Bestimmungsgleichung auf.
Geben Sie das LGS in Matrixform an. (Das LGS muss nicht gelöst werden)

Eine zur y-Achse symmetrische ganzrationale Funtion 4.Grades hat eine Nullstelle bei Xn=2 und an der Stelle x=-1 den Steigungswert 2.
Außerdem verläuft der Graph der Funktion durch den Punkt P1(1/-6)
Stellen Sie die Bestimmungsgleichung auf.
Geben Sie das LGS in Matrixform an. (Das LGS muss nicht gelöst werden)

Mein Ansatz: ist es richtig wenn ich so anfange [mm] ax^4 +bx^3+cx^2+dx+e= [/mm] -6
und für x setze ich ja 1 ein oder ? Und was mache ich eigentlich mit dem Steigungswert 2 ? Ich bitte um Hilfe !

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
LGS in Matrixform: Antwort
Status: (Antwort) fertig Status 
Datum: 15:59 Di 13.03.2012
Autor: fred97


> Eine zur y-Achse symmetrische ganzrationale Funtion
> 4.Grades hat eine Nullstelle bei Xn=2 und an der Stelle
> x=-1 den Steigungswert 2.
>   Außerdem verläuft der Graph der Funktion durch den
> Punkt P1(1/-6)
>  Stellen Sie die Bestimmungsgleichung auf.
>  Geben Sie das LGS in Matrixform an. (Das LGS muss nicht
> gelöst werden)
>  Eine zur y-Achse symmetrische ganzrationale Funtion
> 4.Grades hat eine Nullstelle bei Xn=2 und an der Stelle
> x=-1 den Steigungswert 2.
>   Außerdem verläuft der Graph der Funktion durch den
> Punkt P1(1/-6)
>  Stellen Sie die Bestimmungsgleichung auf.
>  Geben Sie das LGS in Matrixform an. (Das LGS muss nicht
> gelöst werden)
>  
> Mein Ansatz: ist es richtig wenn ich so anfange [mm]ax^4 +bx^3+cx^2+dx+e=[/mm]
> -6

Nein.

Du machst den Ansatz: [mm] f(x)=ax^4 +bx^3+cx^2+dx+e [/mm]

Der Graph von f ist symmetrisch zur y-Achse; was bedeutet das für b und c ?

Edit: was bedeutet das für b und d ? (c war Unfug)


>  und für x setze ich ja 1 ein oder ?


Ja, es ist f(1)=-6. Welche Gleichung bekommst Du ?

> Und was mache ich
> eigentlich mit dem Steigungswert 2 ?

Es gilt: f'(2)=2 und f'(-1)=2

Edit: obiges ist Quatsch. Es muß lauten:  f(2)=0 und f'(-1)=2

Welche Gleichungen erhältst Du ?

FRED


> Ich bitte um Hilfe !
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  


Bezug
                
Bezug
LGS in Matrixform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:07 Di 13.03.2012
Autor: Missy19

mh also müsste die Gleichung so lauten -> [mm] -6=ax^4+2x^3+2x^2+dx+e [/mm]
habe jetzt für b und c 2 eingesetzt oder ist das auch falsch ?
Und das mit f´(2)=2 versteh ich das ist ja die 1. Ableitung aber wie kommt man denn auf die -1 und was muss ich mit diesen beiden Ableitungen machen.

Tut mir leid das ich so viele Fragen stelle, aber vielen Dank das Sie so schnell geantwortet haben.

Bezug
                        
Bezug
LGS in Matrixform: Antwort
Status: (Antwort) fertig Status 
Datum: 16:14 Di 13.03.2012
Autor: wieschoo


> mh also müsste die Gleichung so lauten ->
> [mm]-6=ax^4+2x^3+2x^2+dx+e[/mm]
>  habe jetzt für b und c 2 eingesetzt oder ist das auch
> falsch ?

Das ist falsch.
Es muss f(x)=f(-x) gelten.

>  Und das mit f´(2)=2 versteh ich das ist ja die 1.
> Ableitung aber wie kommt man denn auf die -1 und was muss
> ich mit diesen beiden Ableitungen machen.

der Stelle x=-1 den Steigungswert 2

Leite $ [mm] f(x)=ax^4 +bx^3+cx^2+dx+e [/mm] $ einmal ab und nutze $2=f'(-1)$.

>  
> Tut mir leid das ich so viele Fragen stelle, aber vielen
> Dank das Sie so schnell geantwortet haben.

Bei f'(2)=2 bin ich etwas verwirrt grad, da doch eigentlich f(2)=0 gelten muss. Hoffentlich bekomm ich jetzt nicht von Fred mein Fett weg.

PS: Außerdem muss man doch b und d für die Symmetrie betrachten (und nicht b und c).

Bezug
                                
Bezug
LGS in Matrixform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:34 Di 13.03.2012
Autor: fred97


> > mh also müsste die Gleichung so lauten ->
> > [mm]-6=ax^4+2x^3+2x^2+dx+e[/mm]
>  >  habe jetzt für b und c 2 eingesetzt oder ist das auch
> > falsch ?
>  Das ist falsch.
>  Es muss f(x)=f(-x) gelten.
>  >  Und das mit f´(2)=2 versteh ich das ist ja die 1.
>  > Ableitung aber wie kommt man denn auf die -1 und was

> muss
> > ich mit diesen beiden Ableitungen machen.
>  der Stelle x=-1 den Steigungswert 2
>  
> Leite [mm]f(x)=ax^4 +bx^3+cx^2+dx+e[/mm] einmal ab und nutze
> [mm]2=f'(-1)[/mm].
>  >  
> > Tut mir leid das ich so viele Fragen stelle, aber vielen
> > Dank das Sie so schnell geantwortet haben.
>
> Bei f'(2)=2 bin ich etwas verwirrt grad, da doch eigentlich
> f(2)=0 gelten muss. Hoffentlich bekomm ich jetzt nicht von
> Fred mein Fett weg.

Wiescho soltest Du  , wieschoo ? Der FRED hat nicht richtig hingesehen. Natürlich muß f(2)=0 gelten. Habs schon verbessert.

>  
> PS: Außerdem muss man doch b und d für die Symmetrie
> betrachten (und nicht b und c).

Aua ! Auch da war ich irgendwo anders ! Wiescho eigentlich ? Ach ja, ich hab Schanschmerzen,

Grusch FRED


Bezug
                                        
Bezug
LGS in Matrixform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:41 Di 13.03.2012
Autor: Missy19

ASO okey dann leite ich mal ab

f(x)= [mm] 4ax^3+3bx^2+2cx [/mm]

jetzt richtig ´?

Bezug
                                                
Bezug
LGS in Matrixform: Antwort
Status: (Antwort) fertig Status 
Datum: 16:43 Di 13.03.2012
Autor: fred97


> ASO okey dann leite ich mal ab
>  
> f(x)= [mm]4ax^3+3bx^2+2cx[/mm]

Nein.

>  
> jetzt richtig ´?

Nein.

f'(x)= [mm]4ax^3+3bx^2+2cx+d[/mm]

FRED


Bezug
                
Bezug
LGS in Matrixform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:36 Di 13.03.2012
Autor: Missy19

okey ich versuche es mal

[mm] -6=a1^4+b1^3+c1^2+d1+e [/mm]

ich hoffe das es diesmal richtig ist !
Aber was muss ich mit den 2 Ableitungen machen f(2)=0 und f(-1)=2 ??

oder einfach für d und b 2 einsetzen ?

Bezug
                        
Bezug
LGS in Matrixform: Antwort
Status: (Antwort) fertig Status 
Datum: 16:45 Di 13.03.2012
Autor: fred97


> okey ich versuche es mal
>
> [mm]-6=a1^4+b1^3+c1^2+d1+e[/mm]
>  
> ich hoffe das es diesmal richtig ist !
>  Aber was muss ich mit den 2 Ableitungen machen f(2)=0 und
> f(-1)=2 ??

nein. f(2)=0 und f'(-1)=2

>
> oder einfach für d und b 2 einsetzen ?

Nein. Gummibärchen einsetzen ! Was sonst !

Der Graph von f ist symmetrisch zur y- Achse, also ist b=d=0

FRED


Bezug
                                
Bezug
LGS in Matrixform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:58 Di 13.03.2012
Autor: Missy19

o man ich checke es einfach nicht, aber ich will euch auch nicht stören, trotzdem danke für Eure Hilfe.

Liebe Grüße

Bezug
                                        
Bezug
LGS in Matrixform: ausführlich
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:30 Mi 14.03.2012
Autor: wieschoo


> o man ich checke es einfach nicht, aber ich will euch auch
> nicht stören, trotzdem danke für Eure Hilfe.
>  
> Liebe Grüße

Dann ausführlich:

[mm] f(x)=ax^4 +bx^3+cx^2+dx+e [/mm]
[mm] f'(x)=4ax^3+3bx^2+2cx+d [/mm]

Symmetrie:

             [mm]f(x)=f(-x)[/mm]

also
             [mm]ax^4 +bx^3+cx^2+dx+e=a(-x)^4 +b(-x)^3+c(-x)^2+d(-x)+e[/mm]
             [mm]bx^3+dx=-bx^3-dx[/mm]
             [mm]2bx^3+2dx=0[/mm] für alle x

Punkt P1(1/-6)
             [mm]-6=f(1)=a1^4 +b1^3+c1^2+d1+e [/mm]
             [mm]-6=f(-1)=a(-1)^4 +b(-1)^3+c(-1)^2+d(-1)+e [/mm] (wg. Symmetrie)

Steigungswert

             [mm]2=f'(-1)=4a(-1)^3+3b(-1)^2+2c(-1)+d[/mm]



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]