www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeLGS in abhängigkeit von r
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Gleichungssysteme" - LGS in abhängigkeit von r
LGS in abhängigkeit von r < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

LGS in abhängigkeit von r: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:00 Sa 03.11.2007
Autor: molekular

Aufgabe
bestimmen sie unter verwendung des gaußschen verfahrens die lösungsmenge des folgenden gleichungssystems in abhängigkeit von dem parameter $r [mm] \in \IR$ [/mm]

$4x-y=ry$
$2x+y=rx$

salute zusammen!

hab mich mal an dieser aufgabe probiert aber ich bin mir sehr unsicher obs so stimmt. ich bräuchte sie unbedingt zu montag...wäre schön, wenn sich ihr jemand annehmen könnte [anbet]

LGS(G)

$ 4x-y=ry $
$ 2x+y=rx $

habe die zweite gleichung $ [mm] \cdot(-2) [/mm] $ genommen, zur ersten addiert und nach $ x $ aufgelöst

somit: $ [mm] x=\bruch{ry}{(6-r)} [/mm] $

eingesetzt in die erste gleichung, wobei dann allerdings $y$ entfällt.
komme somit auf eine quadratische gleichung von $r$

[mm] $0=r^2-r-6$ [/mm] für [mm] $r_1=3$ [/mm] und [mm] $r_2=-2$ [/mm]

bedeutet das nun,dass G für [mm] $r_1_2$ $\IL=\left\{ (x,y):x=y\in \IR \right\} [/mm] $ hat und/oder was ist für $ [mm] r\ne r_1_2 [/mm] $ ähmm, hab ich mich total vertüdelt???



        
Bezug
LGS in abhängigkeit von r: Antwort
Status: (Antwort) fertig Status 
Datum: 17:58 Sa 03.11.2007
Autor: schachuzipus

Hallo molekular,

Forme zunächst das LGS um:

[mm] $\vmat{ &4x & -&y&=&ry \\ &2x & +&y&=&rx }$ [/mm] zu

[mm] $\vmat{ &4x & -&(1+r)y&=0 \\ &(2-r)x & +&y&=0 }$ [/mm]

Nun kannst du das -4fache der 2.Zeile zum (2-r)fachen [mm] (r\neq [/mm] 2) der 1.Zeile addieren und bekommst nach einigen Umformungen

[mm] $\vmat{ && &(r-3)(r+2)y&=0 \\ &(2-r)x & +&y&=0 }$ [/mm]

Hier kannst du nun die nötigen Fallunterscheidungen bzgl. $r$ machen

1.Fall: [mm] $r\neq [/mm] 3, [mm] r\neq [/mm] -2$

2.Fall: $r=3$

3.Fall: $r=-2$

Nun bestimme mal für diese 3 Fälle die jeweilige Lösungsmenge...

Da wir für die Umformungen $r=2$ rausnehmen mussten, um die Lösungsmenge unverändert zu lassen, musst du diesen Fall am Schluss noch kurz untersuchen.

Setze dazu $r=2$ in das LGS ein...



LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]