www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenL'Hospital
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Funktionen" - L'Hospital
L'Hospital < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

L'Hospital: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:43 Mo 28.03.2011
Autor: Bilmem

Aufgabe
[mm] \limes_{x\rightarrow\0} \bruch{x^2}{1-cosx} [/mm]

Bestimme den Grenzwert!

1. Ableitung bilden: f(x)= 2x g(x)= 1+sin(x)

2. 0 einsetzen!

3. [mm] \limes_{x\rightarrow\0} \bruch{2*0}{1+sin(0)} [/mm] = [mm] \bruch{0}{1} [/mm] = 0


Richtig ?

        
Bezug
L'Hospital: Antwort
Status: (Antwort) fertig Status 
Datum: 00:48 Mo 28.03.2011
Autor: schachuzipus

Hallo Bilmem,


> [mm]\limes_{x\rightarrow\0} \bruch{x^2}{1-cosx}[/mm]

Lasse den Backslash vor der 0 im GW weg, dann wird's angezeigt, also


>  
> Bestimme den Grenzwert!
>  1. Ableitung bilden: f(x)= 2x [ok] g(x)= 1+sin(x) [notok]

Die 1 in [mm] $1-\cos(x)$ [/mm] ist doch eine Konstante ...

>  
> 2. 0 einsetzen!
>  
> 3. [mm]\limes_{x\rightarrow\0} \bruch{2*0}{1+sin(0)}[/mm] =
> [mm]\bruch{0}{1}[/mm] = 0
>  
>
> Richtig ?

Leider nicht!

Gruß

schachuzipus


Bezug
                
Bezug
L'Hospital: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:03 Mo 28.03.2011
Autor: Bilmem


> Hallo Bilmem,
>  
>
> > [mm]\limes_{x\rightarrow\ 0} \bruch{x^2}{1-cosx}[/mm]
>  
> Lasse den Backslash vor der 0 im GW weg, dann wird's
> angezeigt, also
>  
>
> >  

> > Bestimme den Grenzwert!
>  >  1. Ableitung bilden: f(x)= 2x [ok] g(x)= sin(x)
>  
>  
> >  

> > 2. 0 einsetzen!
>  >  
> > 3. [mm]\limes_{x\rightarrow\0} \bruch{2*0}{sin(0)}[/mm] =
> > [mm]\bruch{0}{0}[/mm] = ?

>  >  

Wieso ist die Aufgabe nicht lösbar ? :S:S


Bezug
                        
Bezug
L'Hospital: Antwort
Status: (Antwort) fertig Status 
Datum: 01:07 Mo 28.03.2011
Autor: schachuzipus

Hallo nochmal,



>
> Wieso ist die Aufgabe nicht lösbar ? :S:S

Doch natürlich, du hast aber den Nenner falsch abgeleitet.

Wenn du es richtig machst, kommt wieder der unbestimmte Ausdruck [mm] $\frac{0}{0}$ [/mm] im Grenzübergang heraus.

Also nochmal mit de l'Hôpital ran ...

Gruß

schachuzipus

>  


Bezug
                                
Bezug
L'Hospital: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:13 Mo 28.03.2011
Autor: Bilmem

Der Nenner ist doch sinus(x), also 0. Im Zähler ist auch eine Null.

[mm] \bruch{2*0}{sin(0)} [/mm] = [mm] \bruch{0}{0} [/mm]

Muss ich nicht weiterrechnen? Das meinte ich mit nicht "lösbar" .

Ist das so richtig ?!?!

Bezug
                                        
Bezug
L'Hospital: Antwort
Status: (Antwort) fertig Status 
Datum: 01:16 Mo 28.03.2011
Autor: schachuzipus

Hallo nochmal,

Ja, es ist [mm] $\lim\limits_{x\to 0}\frac{2x}{\sin(x)}=\frac{0}{0}$ [/mm]

Das ist ein unbestimmter Ausdruck, alle Vor. für de l'Hôpital sind (wieder) erfüllt, also wende die Regel nochmal an!

Hatte ich doch geschrieben,oder?

Gruß

schachuzipus


Bezug
                                                
Bezug
L'Hospital: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:17 Mo 28.03.2011
Autor: Bilmem

Wie mache ich das ? :S

Bezug
                                                        
Bezug
L'Hospital: Antwort
Status: (Antwort) fertig Status 
Datum: 01:19 Mo 28.03.2011
Autor: schachuzipus

Hallo nochmal,


> Wie mache ich das ? :S

Hää?

Wende auf [mm] $\frac{2x}{\sin(x)}$ [/mm] nochmal die Regel von de l'Hôpital an.

Leite Zähler und Nenner getrennt ab und dann lasse [mm] $x\to [/mm] 0$ gehen ...

Gruß

schachuzipus


Bezug
                                                                
Bezug
L'Hospital: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:21 Mo 28.03.2011
Autor: Bilmem

Haha entschuldigung, aber, wie oft muss ich denn hier diese Regel anwenden ?

Also [mm] \bruch{2}{cos(x)} [/mm] = [mm] \bruch{2}{0} [/mm]

Bezug
                                                                        
Bezug
L'Hospital: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:22 Mo 28.03.2011
Autor: Bilmem

[mm] \bruch{2}{1} [/mm] = 2

Sollte es heißen

Bezug
                                                                                
Bezug
L'Hospital: Antwort
Status: (Antwort) fertig Status 
Datum: 01:24 Mo 28.03.2011
Autor: schachuzipus

Hallo nochmal,


> [mm]\bruch{2}{1}[/mm] = 2
>  
> Sollte es heißen  

Ja, so ist es!

Gruß und [gutenacht]

schachuzipus


Bezug
                                                                        
Bezug
L'Hospital: Antwort
Status: (Antwort) fertig Status 
Datum: 01:23 Mo 28.03.2011
Autor: schachuzipus

Hallo nochmal,


> Haha entschuldigung, aber, wie oft muss ich denn hier diese
> Regel anwenden ?

Insgesamt zweimal, wenn du es denn richtig machst.

>
> Also [mm]\bruch{2}{cos(x)}[/mm] = [mm]\bruch{2}{0}[/mm]   [notok]

[mm]\cos(x)\longrightarrow \cos(0)=1[/mm] für [mm]x\to 0[/mm]

Damit ergibt sich 2 als GW

Gruß

schachuzipus


Bezug
                                                                        
Bezug
L'Hospital: Antwort
Status: (Antwort) fertig Status 
Datum: 08:12 Mo 28.03.2011
Autor: fred97


> Haha entschuldigung, aber, wie oft muss ich denn hier diese
> Regel anwenden ?

Einmal, denn Du solltest wissen:  [mm] \bruch{sinx}{x} \to [/mm] 1 für x [mm] \to [/mm] 0.

FRED

>
> Also [mm]\bruch{2}{cos(x)}[/mm] = [mm]\bruch{2}{0}[/mm]  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]