www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieLänge einer Kurve
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integrationstheorie" - Länge einer Kurve
Länge einer Kurve < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Länge einer Kurve: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 01:19 Do 13.08.2015
Autor: Robienchen

Aufgabe
Berechnen Sie die Länge des Graphen der Kurve g(t) = [mm] \bruch{t4+3}{6t} [/mm]
im Intervall t [mm] \in [/mm] [1, 2].

habe jetzt für [mm] \vec{\gamma}(t) [/mm] = [mm] \vektor{t \\ \bruch{t4+3}{6t}} [/mm] bestimmt und damit für
[mm] \parallel\vec{\gamma}^{(1)}(t)\parallel [/mm] = [mm] \wurzel{1+ (\bruch{t^{2}}{2}-\bruch{1}{2t^{2}})^{2}} [/mm]

und für [mm] |\neg| [/mm] = [mm] \integral_{1}^{2}{\wurzel{1+ (\bruch{t^{2}}{2}-\bruch{1}{2t^{2}})^{2}} dt} [/mm]

in meinen aufzeichnungen steht jetzt weiter
= [mm] [\bruch{1}{6}t^{3}-\bruch{1}{2t}] [/mm]

aber wie genau bildet man hier die stammfunktion? nur von dem zweiten summanden unter der wurzel? stehe irgendwie auf dem schlauch...
danke für eure hilfe!

        
Bezug
Länge einer Kurve: Antwort
Status: (Antwort) fertig Status 
Datum: 02:17 Do 13.08.2015
Autor: Marc

Hallo Robienchen,

> aber wie genau bildet man hier die stammfunktion? nur von
> dem zweiten summanden unter der wurzel? stehe irgendwie auf
> dem schlauch...

Den Term unter der Wurzel kannst du in ein Quadrat verwandeln, indem du die Klammern auflöst. Zum Klammernauflösen verwende die 2. binomische Formel, aber schreibe sie mal unzusammengefasst auf... Welchen Wert hat dann der Mittelterm -2*a*b? Und was kommt raus, wenn man 1 dazuaddiert und welche Form haben die drei Summanden dann? Mehr braucht man nicht zu überlegen.

Du kannst natürlich auch nach dem Klammernauflösen [mm] $\frac1{4t^4}$ [/mm] ausklammern, dann siehst du evtl. auch die Form, die die drei Summanden in der Klammer haben.

Viele Grüße
Marc

Bezug
                
Bezug
Länge einer Kurve: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 06:11 Do 13.08.2015
Autor: Robienchen

das hab ich auch versucht zu machen, da hab ich dann aber für den term unter der wurzel [mm] (\bruch{t^{2}}{2})^{2}+\bruch{1}{2}+(\bruch{1}{2t^{2}})^{2} [/mm]
aber jetzt hab ich ja immer noch dieses [mm] \bruch{1}{2} [/mm]   ...sehe nicht wie ich das jetzt umstellen soll...

Bezug
                        
Bezug
Länge einer Kurve: Antwort
Status: (Antwort) fertig Status 
Datum: 06:52 Do 13.08.2015
Autor: statler

Hi,
du bist ja in der glücklichen Lage, die Stammfunktion zu kennen. Also muß doch die Ableitung der Stammfunktion gleich der positiven Wurzel aus deinem Term sein. Oder das Quadrat der Ableitung gleich deinem Term. Ist das so?
Anderer Weg: Schreib die 1. Binomische Formel mit a und b als Platzhalter groß auf und vergleiche sie mit deinem Term. Was könnte a sein, und was könnte b sein? Paßt alles zusammen?
Gruß aus HH
Dieter

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]