www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenLänge einer Strecke bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Exp- und Log-Funktionen" - Länge einer Strecke bestimmen
Länge einer Strecke bestimmen < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Länge einer Strecke bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:07 Mo 18.01.2010
Autor: low_head

Aufgabe
Die Parallele zur y-Achse mit X = u , u > 0 , schneidet den Graphen von f im Punkt Pu(u|f(u)) und den Graphen von f' im Punkt Qu(u|f'(u)).
Bestimmen Sie u so, dass die Länge d(u) der Strecke PuQu maximal wird, und geben Sie diese maximal Länge an.

f(x) = [mm] (x+1)*e^{-x} [/mm]
f'(x) = [mm] -x*e^{-x} [/mm]

aber was soll ich nun tun? ich weiß gar nicht wo ich was rechnen soll...

Die Parallele hat ja y = 0 und den Schnittpunkt.. das heißt ich muss sie jeweils gleichsetzen mit f und f'.. doch wie komm ich zur Gleichung von der Parallele?
Die Form wäre ja y=m*x+n wobei mir ja nur das y bekannt ist.

Irgendwie versteh ich das ganze nicht.


        
Bezug
Länge einer Strecke bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:24 Mo 18.01.2010
Autor: Adamantin


> Die Parallele zur y-Achse mit X = u , u > 0 , schneidet den
> Graphen von f im Punkt Pu(u|f(u)) und den Graphen von f' im
> Punkt Qu(u|f'(u)).
>  Bestimmen Sie u so, dass die Länge d(u) der Strecke PuQu
> maximal wird, und geben Sie diese maximal Länge an.
>  f(x) = [mm](x+1)*e^{-x}[/mm]
>  f'(x) = [mm]-x*e^{-x}[/mm]
>  
> aber was soll ich nun tun? ich weiß gar nicht wo ich was
> rechnen soll...
>  
> Die Parallele hat ja y = 0 und den Schnittpunkt.. das
> heißt ich muss sie jeweils gleichsetzen mit f und f'..
> doch wie komm ich zur Gleichung von der Parallele?
> Die Form wäre ja y=m*x+n wobei mir ja nur das y bekannt
> ist.
>  
> Irgendwie versteh ich das ganze nicht.
>  

Also zunächst mal ein Bild von mir, immer sehr wichtig!!

Also die obere Kurve in schwarz ist f(x), wie du sie angegeben hast und die blaue Kurve ist deren Ableitung f'(x). P liegt auf f und besitzt die Koordinaten u und f(u), Q liegt natürlich senkrecht darunter, denn die Gerade ist ja parallel zur y-Achse und besitzt die Koordinaten u und f'(u), woran du auch siehst, dass P und Q übereinander liegen müssen, weil die x-Koordinate x=u identisch ist. So, wir interessieren uns für die Strecke [mm] \overline{PQ}, [/mm] demzufolge musst du die Differenz der y-Koordinaten berechnen, also [mm] |y_2-y_1|, [/mm] wobei du hier ja siehst, das P höher als Q liegt, weshalb du gleich f(u)-f'(u) rechnen kannst und das soll maximal sein, das solltest du jetzt schaffen

[Dateianhang nicht öffentlich]


Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                
Bezug
Länge einer Strecke bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:58 Mo 18.01.2010
Autor: low_head

wunderbar erklärt.. danke :) ich habe es kapiert ich hoffe nun dass mein Ergebnis auch richtig ist..

[mm] e^{-u}(2u+1) [/mm]

Bezug
                        
Bezug
Länge einer Strecke bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:11 Mo 18.01.2010
Autor: Steffi21

Hallo und hm, es ist doch aber ein konkretes x= .... gesucht, es ist die Ableitung der Differenzfunktion zu bilden, diese dann gleich Null zu setzen, vermutlich hast du in die Ableitung einfach "u" eingesetzt, überprüfe aber mal deine Ableitung, du hast einen Vorzeichenfehler, Steffi

Bezug
                                
Bezug
Länge einer Strecke bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:16 Mo 18.01.2010
Autor: low_head

nein es ist d(u) gesucht.. kein x.. und mit der Gleichung hab ich eine klare Funktion für d(u)

Bezug
                                        
Bezug
Länge einer Strecke bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:20 Mo 18.01.2010
Autor: fencheltee


> nein es ist d(u) gesucht.. kein x.. und mit der Gleichung
> hab ich eine klare Funktion für d(u)

"Bestimmen Sie u so, dass die Länge d(u) der Strecke PuQu maximal wird, und geben Sie diese maximal Länge an."
dieses u ist ja nur eine beliebige konstante für jede gerade x=u.
da du durch die abgeleitete differenzfunktion das maximum (also maximale länge) bestimmen kannst, ist u(=x) genau bestimmbar.

gruß tee

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]