www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVK 29: OberstufenmathematikLage Gerade-Gerade IV
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "VK 29: Oberstufenmathematik" - Lage Gerade-Gerade IV
Lage Gerade-Gerade IV < VK 29: Oberstufe < VK Abivorbereitungen < Schule < Vorkurse < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "VK 29: Oberstufenmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lage Gerade-Gerade IV: anal. Geom. der Geraden
Status: (Übungsaufgabe) Übungsaufgabe Status 
Datum: 17:31 Di 30.12.2008
Autor: argl

Aufgabe

Prüfen Sie welche Lage die Gerade [mm] $g:\vec{x}=\vektor{2 \\ 0 \\ 1}+r\cdot\vektor{-1 \\ 4 \\ -2}$ [/mm]  und die Gerade [mm] $h:\vec{x}= \vec{q} [/mm] + s * [mm] \vec{n}$ [/mm] zueinander haben !

a) [mm] $\vec{q} [/mm] = [mm] \vektor{1 \\ 0 \\ 3}$ $\vec{n} [/mm] = [mm] \vektor{2,5 \\ -10 \\ 5}$ [/mm]

b) [mm] $\vec{q} [/mm] = [mm] \vektor{-1 \\ 12 \\ -5}$ $\vec{n} [/mm] = [mm] \vektor{0,25 \\ -1 \\ 0,5}$ [/mm]

c) [mm] $\vec{q} [/mm] = [mm] \vektor{1 \\ 0 \\ -1}$ $\vec{n} [/mm] = [mm] \vektor{-1 \\ 8 \\ -2}$ [/mm]



        
Bezug
Lage Gerade-Gerade IV: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 22:12 Sa 25.04.2009
Autor: Schachschorsch56

[mm] a)g:\vec{x}=\vektor{2 \\ 0 \\ 1}+r\cdot\vektor{-1 \\ 4 \\ -2} h:\vec{x}=\vektor{1 \\ 0 \\ 3}+s\cdot\vektor{2.5 \\ 10 \\ 5} [/mm]

a)1. g und h parallel ?

Ja !, denn es gilt [mm] r\cdot\vektor{-1 \\ 4 \\ -2}= \vektor{2.5 \\ 10 \\ 5} [/mm] für r=-2.5

a)2. g und h identisch ?

Nein !, denn für die Gleichung [mm] \vektor{2 \\ 0 \\ 1}+r\cdot\vektor{-1 \\ 4 \\ -2}=\vektor{1 \\ 0 \\ 3} [/mm] gibt es kein r, das das LGS erfüllt !

[mm] b)g:\vec{x}=\vektor{2 \\ 0 \\ 1}+r\cdot\vektor{-1 \\ 4 \\ -2} h:\vec{x}=\vektor{-1 \\ 12 \\ -5}+s\cdot\vektor{0.25 \\ -1 \\ 0.5} [/mm]

b)1. g und h parallel ?

Ja ! denn es gibt ein s=-4, das die Gleichung [mm] \vektor{-1 \\ 12 \\ -5}+s\cdot\vektor{0.25 \\ -1 \\ 0.5}=\vektor{-1 \\ 4 \\ -2} [/mm] erfüllt !

b)2. sind g und h identisch ?
Ja ! denn es gilt:

[mm] \vektor{2 \\ 0 \\ 1}+r\cdot\vektor{-1 \\ 4 \\ -2}=\vektor{-1 \\ 12 \\ -5} [/mm] für r=3 und
[mm] \vektor{-1 \\ 12 \\ -5}+s\cdot\vektor{0.25 \\ -1 \\ 0.5}=\vektor{2 \\ 0 \\ 1} [/mm] für s=12

[mm] c)g:\vec{x}=\vektor{2 \\ 0 \\ 1}+r\cdot\vektor{-1 \\ 4 \\ -2} h:\vec{x}=\vektor{1 \\ 0 \\ -1}+s\cdot\vektor{-1 \\ 8 \\ -2} [/mm]

c)1. g und h parallel ?

Nein !, denn für die Gleichung [mm] r\cdot\vektor{-1 \\ 4 \\ -2}=\vektor{-1 \\ 8 \\ -2} [/mm] gibt es kein r, das das LGS erfüllt !

c)3. Gibt es einen Schnittpunkt der Geraden g und h ?

ich setze [mm] \vektor{2 \\ 0 \\ 1}+r\cdot\vektor{-1 \\ 4 \\ -2}=\vektor{1 \\ 0 \\ -1}+s\cdot\vektor{-1 \\ 8 \\ -2} [/mm] und schreibe das LGS:

I 2 - r = 1 -s
II 4r = 8s  [mm] \Rightarrow [/mm] r=2s setze r in I und III ein
III 1 - 2r = -1 - 2s

I 2 - 2s = 1 -s [mm] \Rightarrow [/mm] s=1
III 1 - 4s = -1 - 2s [mm] \Rightarrow [/mm] s=1 [mm] \Rightarrow [/mm] r=2

es gibt also einen Schnittpunkt S. Ich setze s=1 in h und r=2 in g ein:

[mm] \overrightarrow{OS}=\vektor{1 \\ 0 \\ -1}+1\cdot\vektor{-1 \\ 8 \\ -2}=\vektor{0 \\ 8 \\ -3} [/mm] und
[mm] \overrightarrow{OS}=\vektor{2 \\ 0 \\ 1}+2\cdot\vektor{-1 \\ 4 \\ -2}=\vektor{0 \\ 8 \\ -3} [/mm] stimmt überein, damit

haben wir als Schnittpunkt S (0|8|-3)

Schorsch

Bezug
                
Bezug
Lage Gerade-Gerade IV: alles okay!
Status: (Antwort) fertig Status 
Datum: 09:27 So 26.04.2009
Autor: Loddar

Hallo Schorsch!


Alles korrekt gelöst. [ok]


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "VK 29: Oberstufenmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]