www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenLagebeziehung der E:x und g:x
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Geraden und Ebenen" - Lagebeziehung der E:x und g:x
Lagebeziehung der E:x und g:x < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lagebeziehung der E:x und g:x: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:38 Do 15.03.2007
Autor: aleskos

Aufgabe
Geg:

[mm] E:\vec{x}==\vektor{2 \\ -3 \\ 2}+k\vektor{3 \\ -2 \\ 2}+l\vektor{-3 \\ 6 \\ 4} [/mm]

und

[mm] g:\vec{x}=\vektor{2 \\ -3 \\ 2}+m\vektor{2 \\ -3 \\ 6} [/mm]

Untersuchen Sie die Lagebeziehung der Geraden g bezüglich der Ebene E!

Hallo erstmal,

also ich gehe jetzt mal ganz langsam vor:

die Ebene in der Parameterform:
[mm] 2x_{1}-3x_{2}+6x_{3}=25 [/mm]

Punkt A von der Geraden (2/-3/2)
Punkt B ist doch Aufpunkt + Vektor, also (4/-6/8)


Ich kann jetzt die Punkte A u.B in die Parametergleichung einsetzen.

Punkt A und die Ebene  25=25 -> wahre Aussage.

Punkt B und die Ebene  74=25 -> nicht wahr.


so, nun heißt es also, dass die Gerade g in dem Punkt A(2/-3/2) die Ebene schneidet
ist das richtig?

was ist mit B?
was kann ich dann letztendlich über die Beziehung aussagen?

gruß
aleskos


        
Bezug
Lagebeziehung der E:x und g:x: Antwort
Status: (Antwort) fertig Status 
Datum: 18:19 Do 15.03.2007
Autor: leduart

Hallo
Du haettest die Aufgabe richtig geloest,wenn deine Ebenengleichung richtig waer, ist sie aber nicht.
wie bist du auf die Parameterform gekommen?
A ist Aufpunkt der Geraden und der Ebene, d.h. die Gerade schneidet, oder liegt in der Ebene.
jetzt musst du nur noch feststellen, ob der Geradenvektor in der Ebene liegt, oder nicht. Du kannst auch einfach einen weiteren Punkt der Geraden nehmen, wie dus gemacht hast, aber in die richtige Ebenengl.
Gruss leduart

Bezug
                
Bezug
Lagebeziehung der E:x und g:x: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:45 Do 15.03.2007
Autor: aleskos

Es waren drei Punkte gegeben:

A(2/-3/2)
B(5/-5/0)
C(-1/3/6)

A habe ich als Aufpunkt genommen.

[mm] n_{E}=\vektor{3 \\ -2 \\ -2}X\vektor{-3 \\ 6 \\ 4} [/mm]

[mm] =2\vektor{2 \\ -3 \\ 6} [/mm]

[mm] \vektor{2 \\ -3 \\ 6}\circ\vektor{x_{1}-2 \\ x_{2}+3 \\ x_{3}-2}=0 [/mm]

daraus die obenstehende E:x
ich bin mir ziemlich sicher, dass die Ebenengleichung richtig ist.


allerdings, mir hätte es schon am Anfang auffahlen müssen, dass der Aufpunkt identisch ist.

so, klar ist..... die Ebene und die Gerade haben gemeinsamen Punkt!


ich habe die Gerade in zwei Punkte zerlegt A(2/-3/2) ; B(4/-6/8) und sie dann in die Ebenengleichung eingesetzt.
Punkt A ist wahr (25=25) ist ja auch der Aufpunkt.
Punkt B ist nicht wahr. d.h. dass die Gerade weder [mm] \in [/mm] E noch parallel zu der Ebene ist.
ist das richtig so?



wie stelle ich fest, ob der Geradenvektor in der Ebene liegt oder nicht,
ich meine, ohne das Zerlegen der Geraden in Punkte?




Bezug
                        
Bezug
Lagebeziehung der E:x und g:x: Antwort
Status: (Antwort) fertig Status 
Datum: 19:14 Do 15.03.2007
Autor: Leia


>  
>
>
> wie stelle ich fest, ob der Geradenvektor in der Ebene
> liegt oder nicht,
> ich meine, ohne das Zerlegen der Geraden in Punkte?
>  
>
>  

Hallo aleskos,
um festzustellen, ob der Geradenvektor in der Ebene liegt, musst du prüfen, ob er linear abhängig von den Ebenenvektoren ist.
Wenn ich mich richtig erinnere, macht du das, indem du
[mm] x*\vec{a}+y*\vec{b}=\vec{c} [/mm] setzt.
(die Vektoren a und b sin die Ebenenvektoren, c der Geradenvektor)
Diese Gleichung wird aufgelöst. Wenn sie eine Lösung hat, ist der Geradenvektor linear abhängig von den Ebenenvektoren, liegt die Gerade in der Ebene.
Hat die Gleichung keine Lösung, ist das nicht der Fall.

Ich hoffe, ich konnte dir helfen.
gruß
Leia

Bezug
                                
Bezug
Lagebeziehung der E:x und g:x: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:21 Do 15.03.2007
Autor: aleskos

okay,
vielen Dank!

klar soweit ;)

Bezug
                                
Bezug
Lagebeziehung der E:x und g:x: Korrekturmitteilung
Status: (Korrektur) kleiner Fehler Status 
Datum: 19:27 Do 15.03.2007
Autor: Kroni


> >  

> >
> >
> > wie stelle ich fest, ob der Geradenvektor in der Ebene
> > liegt oder nicht,
> > ich meine, ohne das Zerlegen der Geraden in Punkte?
>  >  
> >
> >  

> Hallo aleskos,
>  um festzustellen, ob der Geradenvektor in der Ebene liegt,
> musst du prüfen, ob er linear abhängig von den
> Ebenenvektoren ist.

Richtig.

>  Wenn ich mich richtig erinnere, macht du das, indem du
>  [mm]x*\vec{a}+y*\vec{b}=\vec{c}[/mm] setzt.
>  (die Vektoren a und b sin die Ebenenvektoren, c der
> Geradenvektor)
>  Diese Gleichung wird aufgelöst. Wenn sie eine Lösung hat,
> ist der Geradenvektor linear abhängig von den
> Ebenenvektoren, liegt die Gerade in der Ebene.
>  Hat die Gleichung keine Lösung, ist das nicht der Fall.

Nein.
Du musst das Gleichungssystem aufstellen:
[mm] t*\vec{a}+q*\vec{b}+r*\vec{c}=\vec{0} [/mm]

Wenn dieses Gleichungsystem nur eine Lösung hat (nämlich t=q=r=0), dann sind die Vektoren linear unabhängig.
Ansonsten wenn du unendlich viele Lösungen hast, sind die Vektoren linear abhängig.

Das ganze kannst du dann mit Hilfe der Determinante prüfen (falls du die Anazahl der Lösungen eines LGS schon mti Hilfe der Determinante bestimmen kannst).

Slaín,

Kroni

>  
> Ich hoffe, ich konnte dir helfen.
>  gruß
>  Leia


Bezug
        
Bezug
Lagebeziehung der E:x und g:x: Tip Idee
Status: (Antwort) fertig Status 
Datum: 20:09 Do 15.03.2007
Autor: Ibrahim

2+3k-3l=2+2m
-3-2k+6l=-3-3m
2+2k+6l=2+6m
drei Variabeln drei Gleichungen
l=0
m=0
k=0
dann die Gerade schneidet der Ebene in Punkt(2/-3/2)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]