www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungLagebeziehungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra / Vektorrechnung" - Lagebeziehungen
Lagebeziehungen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lagebeziehungen: Frage
Status: (Frage) beantwortet Status 
Datum: 16:33 Do 28.04.2005
Autor: bionda

Hallo,
ich hoffe ihr könnt mir helfen. Ich habe mehrere Fragen, auf die ich keine Antwort finde...
1) Warum können Ebenen im R³ nicht windschief sein?
2) Wie stellt man fest, ob 2 Geraden, eine Ebene zu einer Gerade oder eine Ebene zu einer Ebene orthogonal ist? Aber ohne diese komische Normalenform sondern in Parameterform...
3) Wie bestimme ich die Entfernung zweier Punkte im euklidischen Raum?
Würde mich über Hilfe sehr freuen.
Gruß
P.S. Ich habe diese Fragen in keinem anderen Forum gestellt.

        
Bezug
Lagebeziehungen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:11 Do 28.04.2005
Autor: Max

Hallo bionda,

>  1) Warum können Ebenen im R³ nicht windschief sein?

Naja, damit zwei Objekte windschief sind müssten sie ja im Raum aneinander vorbei gehen. Das Problem ist, dass Ebenen so breit und lang sind, so dass daran nix vorbeipasst ;-) Übrigens selbst so eine schmale schlanke Gerade kann im [mm] $\IR^3$ [/mm] nicht windschief zu einer Ebene sein.

Mathematisch gesehen führen diese Schnittprobleme zu einem linearen Gleichungssystem. Bei dem Lagebeziehung von einer Geraden zu einer Ebene führt dies zu einem GLS mit drei Gleichungen und drei Unbekannten.

[mm] $r\cdot \vec{u}+s\cdot \vec{v}+t\cdot \vec{w}=\vec{p}-\vec{q}$ [/mm]

Diese Gleichung ist genau dann eindeutig lösbar, wenn die drei Richtungsvektoren von Ebene und Gerade nicht linear abhängig ist. Damit das Gleichungssystem keine Lösung hat müsste es mindestens überbestimmt sein, dies ist aber nur der Fall, wenn einer der Richtungsvektoren linear abhängig ist zu den anderen Beiden. Dann wären Gerade und Ebene aber parallel (bzw. identisch).


>  2) Wie stellt man fest, ob 2 Geraden, eine Ebene zu einer
> Gerade oder eine Ebene zu einer Ebene orthogonal ist? Aber
> ohne diese komische Normalenform sondern in
> Parameterform...

Gar nicht. Nur das Skalarprodukt gibt die Auskunft über Winkel zwischen Vektoren! (Ansonsten finde ich die Frage sehr komisch formuliert.)



>  3) Wie bestimme ich die Entfernung zweier Punkte im
> euklidischen Raum?

Durch zweifache Anwendung des Satzes von Pythagoras kannst du zeigen, dass die Länge eines Vektors gegeben wird durch [mm] $d(\vec{x})=\sqrt{(x_1)^2+(x_2)^2+(x_3)^2}$. [/mm] Der Abstand zwischen zwei Punkten wird dann durch die Länge des Differenzvektors [mm] $\overrightarrow{PQ}$ [/mm] definiert.

Gruß Max





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]