Lagrange < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
|
Hallo,
ich habe eine Frage zur Lagrange-Methode. Ich habe ich nichtlineares Gleichungssystem
min f(x) unter den Nebenbedingungen g(x)=0 und [mm] h(x)\le{0}.
[/mm]
Sei x zulässiger Punkt, dann heißt [mm] h_i [/mm] aktiv, wenn [mm] h_i(x)=0 [/mm] und [mm] h_j [/mm] inaktiv, wenn [mm] h_j(x)<0.
[/mm]
Bei der Untersuchung von Extremalstellen werden nur auf die aktiven Restriktionen (d.h. g(x)=0 und [mm] h_i(x)=0) [/mm] beschränkt.
Wie lässt sich das mathematisch begründen? Könnt ihr mir das erklären, oder kennt ihr ein gutes Skript, das es dazu im Internet gibt?
Ich habe hier was gefunden: http://www.uni-graz.at/imawww/volkwein/opt.pdf
Zitat:
"Eine aktive Nebenbedingung an einem zulassigen Punkt x restringiert das Gebiet der zulassigen Punkte in der Nachbarschaft von x, wahrend die inaktive Nebenbedingung lokal keinen Einfluss auf die zulassige Menge hat
[mm] (g_i(x) [/mm] < 0 [mm] \Rightarrow g_i(x)\le{0} [/mm] und [mm] g_i(\hat{x})<0 [/mm] in einer Umgebung von x). Daher konnen wir uns bei der Untersuchung
von Eigenschaften von lokalen Minimalstellen auf aktive Restriktionen
beschranken."
Das verstehe ich aber leider nicht.
Danke.
Gruß
Twm
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:36 Do 08.09.2011 | Autor: | rainerS |
Hallo Twm!
> ich habe eine Frage zur Lagrange-Methode. Ich habe ich
> nichtlineares Gleichungssystem
>
> min f(x) unter den Nebenbedingungen g(x)=0 und [mm]h(x)\le{0}.[/mm]
>
> Sei x zulässiger Punkt, dann heißt [mm]h_i[/mm] aktiv, wenn
> [mm]h_i(x)=0[/mm] und [mm]h_j[/mm] inaktiv, wenn [mm]h_j(x)<0.[/mm]
>
> Bei der Untersuchung von Extremalstellen werden nur auf die
> aktiven Restriktionen (d.h. g(x)=0 und [mm]h_i(x)=0)[/mm]
> beschränkt.
>
> Wie lässt sich das mathematisch begründen? Könnt ihr mir
> das erklären, oder kennt ihr ein gutes Skript, das es dazu
> im Internet gibt?
>
> Ich habe hier was gefunden:
> http://www.uni-graz.at/imawww/volkwein/opt.pdf
>
> Zitat:
> "Eine aktive Nebenbedingung an einem zulassigen Punkt x
> restringiert das Gebiet der zulassigen Punkte in der
> Nachbarschaft von x, wahrend die inaktive Nebenbedingung
> lokal keinen Einfluss auf die zulassige Menge hat
> [mm](g_i(x)[/mm] < 0 [mm]\Rightarrow g_i(x)\le{0}[/mm] und [mm]g_i(\hat{x})<0[/mm]
> in einer Umgebung von x). Daher konnen wir uns bei der
> Untersuchung
> von Eigenschaften von lokalen Minimalstellen auf aktive
> Restriktionen
> beschranken."
>
> Das verstehe ich aber leider nicht.
Wenn in einem Punkt x die Nebenbedingung inaktiv ist, also $h(x)<0$, dann gilt diese Ungleichung wegen der Stetigkeit von h in einer offenen Umgebung von x, also $h(y)<0$ für alle [mm] $y\in [/mm] U(x)$. Also ist die Nebenbedingung in ganz $U(x)$ inaktiv. Das bedeutet, dass diese Nebenbedingung keinen Einfluss auf die Existenz eines lokalen Extremums in $U(x)$ hat.
Viele Grüße
Rainer
|
|
|
|