www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikLagrange Multiplikator
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Physik" - Lagrange Multiplikator
Lagrange Multiplikator < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lagrange Multiplikator: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:18 Fr 07.11.2008
Autor: HansPhysikus

Hallo,

hier:
[]http://tabitha.phas.ubc.ca/wiki/index.php/Constraints_and_Lagrange%27s_Equations#The_Pendulum

wird die Bewegungsgelichung des mathematischen Pendels mit Hilf von Lagrange-Multiplikatoren hergeleitet.

Wie lässt sich das [mm] \lambda(r-l) [/mm] in der zweiten Gleichung erklären?

LG,
HP

        
Bezug
Lagrange Multiplikator: Antwort
Status: (Antwort) fertig Status 
Datum: 01:35 Sa 08.11.2008
Autor: rainerS

Hallo!

> Hallo,
>  
> hier:
>  
> []http://tabitha.phas.ubc.ca/wiki/index.php/Constraints_and_Lagrange%27s_Equations#The_Pendulum
>  
> wird die Bewegungsgelichung des mathematischen Pendels mit
> Hilf von Lagrange-Multiplikatoren hergeleitet.
>  
> Wie lässt sich das [mm]\lambda(r-l)[/mm] in der zweiten Gleichung
> erklären?

Die (holonome) Zwangsbedingung ist doch $Z=r-l=0$, da die Länge des Pendels eine Konstante ist. Die Zwangskraft steht senkrecht auf der durch die Zwangsbedingung definierten Hyperfläche, ist also gegeben durch

[mm] \lambda \nabla Z = \lambda \nabla(r-l) [/mm]

Anders ausgedrückt: du kannst [mm] $\lambda [/mm] Z$ zum Potential hinzuaddieren.


Viele Grüße
   Rainer

Bezug
                
Bezug
Lagrange Multiplikator: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:54 Sa 08.11.2008
Autor: HansPhysikus


>  
> Die (holonome) Zwangsbedingung ist doch [mm]Z=r-l=0[/mm], da die
> Länge des Pendels eine Konstante ist.

Ok.

> Die Zwangskraft steht
> senkrecht auf der durch die Zwangsbedingung definierten
> Hyperfläche

..steht senkrecht auf der Fläche kann ich verstehen. Hyperfläche verstehe ich nicht, da ich dies zum ersten mal höhre.


> , ist also gegeben durch
>  
> [mm]\lambda \nabla Z = \lambda \nabla(r-l)[/mm]


diesen gedankengang kann ich nicht nachvollziehen


>  
> Anders ausgedrückt: du kannst [mm]\lambda Z[/mm] zum Potential
> hinzuaddieren.
>  
>
> Viele Grüße
>     Rainer

In der gsamnten vorlesung kam der Lagrangemultiplikator nur in folgender Formel vor:

Langrangegl. 1. Art:
[mm] \frac{d}{dt}\frac{\partial L}{\partial \dot{q_j}} [/mm] - [mm] \frac{\partial L}{\partialq_j} [/mm] = [mm] \summe_{i=1}^{k}\lambda_i a_{ij} [/mm]

wobei j=1,...3N

Gruß,
HP

Bezug
                        
Bezug
Lagrange Multiplikator: Antwort
Status: (Antwort) fertig Status 
Datum: 16:19 Sa 08.11.2008
Autor: rainerS

Hallo!

> >  

> > Die (holonome) Zwangsbedingung ist doch [mm]Z=r-l=0[/mm], da die
> > Länge des Pendels eine Konstante ist.
>  
> Ok.
>  
> > Die Zwangskraft steht
> > senkrecht auf der durch die Zwangsbedingung definierten
> > Hyperfläche
>  
> ..steht senkrecht auf der Fläche kann ich verstehen.
> Hyperfläche verstehe ich nicht, da ich dies zum ersten mal
> höhre.
>
> > , ist also gegeben durch
>  >  
> > [mm]\lambda \nabla Z = \lambda \nabla(r-l)[/mm]
>  
>
> diesen gedankengang kann ich nicht nachvollziehen

Wenn Z=0 eine Fläche definiert, dann ist [mm] $\nabla [/mm] Z$ senkrecht zur Fläche, denn der Gradient steht senkrecht auf jedem Tangentialvektor an die Fläche. Das folgt aus [mm] $Z(\gamma(t))=0 \implies \nabla Z(\gamma(t)) [/mm] * [mm] \dot\gamma(t) [/mm] = 0$ für jede Kurve [mm] $\gamma$ [/mm] auf der Fläche.

>  
>
> >  

> > Anders ausgedrückt: du kannst [mm]\lambda Z[/mm] zum Potential
> > hinzuaddieren.
>  >  
> >
> > Viele Grüße
>  >     Rainer
>
> In der gsamnten vorlesung kam der Lagrangemultiplikator nur
> in folgender Formel vor:
>  
> Langrangegl. 1. Art:
>  [mm]\frac{d}{dt}\frac{\partial L}{\partial \dot{q_j}} -\frac{\partial L}{\partial q_j} = \summe_{i=1}^{k}\lambda_i a_{ij}[/mm]
>  
> wobei j=1,...3N

Das ist genau die Gleichung, nach der du gefragt hast. Entweder du verwendest den Formalismus der 1. Art, dann steht die Gleichung so da. Oder - wenn es sich wie im vorliegenden Fall - um eine reine ortsabhängigige Zwangsbedingung handelt, kann du die Zwangsbedingung mit Lagrangemultiplikator zur Lagrangefunktion addieren.

Formal entsteht die Lagrangegleichung 2. Art aus der Suche nach einem Extremum mit Nebenbedingungen. Dabei wird zum Funktional, dessen Extremum bestimmt werden soll, die Nebenbedingung mit Lagrangemultiplikator addiert.

Viele Grüße
   Rainer


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]