www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenLagrange'scher Multiplikator
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - Lagrange'scher Multiplikator
Lagrange'scher Multiplikator < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lagrange'scher Multiplikator: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:45 So 13.05.2012
Autor: racy90

Hallo,

ich habe eine Funktion f(x,y)=xy und soll nun bestätigen dass f(x,y) keine lok. Extrema im Bereich  [mm] \{(x,y) :x^2+y^2<1\} [/mm] hat


Im Unterpunkt habe ich die Extrema unter der Nebenbed. [mm] x^2+y^2=1 [/mm] suchen müssen und gefunden.

Aber wie funktioniert das hier?

        
Bezug
Lagrange'scher Multiplikator: Antwort
Status: (Antwort) fertig Status 
Datum: 20:42 So 13.05.2012
Autor: MathePower

Hallo racy90,

> Hallo,
>  
> ich habe eine Funktion f(x,y)=xy und soll nun bestätigen
> dass f(x,y) keine lok. Extrema im Bereich  [mm]\{(x,y) :x^2+y^2<1\}[/mm]
> hat
>  
>
> Im Unterpunkt habe ich die Extrema unter der Nebenbed.
> [mm]x^2+y^2=1[/mm] suchen müssen und gefunden.
>  
> Aber wie funktioniert das hier?


Führe eine normale Extermwertuntersuchung durch.

Löse daher zunächst das Gleichungssystem

[mm]f_{x}\left(x,y\right)=0, \ f_{y}\left(x,y\right)=0[/mm]

Untersuche dann die Lösungen mit der Hesse-Matrix.


Gruss
MathePower

Bezug
                
Bezug
Lagrange'scher Multiplikator: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:53 So 13.05.2012
Autor: racy90

dann komme ich auf eine Determinante von [mm] \vmat{ 0 & 1 \\ 1 & 0 } [/mm] = -1<0 also ist die hinreichende Bedingung nicht erfüllt  und wie weiß ich jetzt das kein lok.Extrema im Inneren des Bereiches liegt?

Bezug
                        
Bezug
Lagrange'scher Multiplikator: Antwort
Status: (Antwort) fertig Status 
Datum: 21:02 So 13.05.2012
Autor: MathePower

Hallo racy90,


> dann komme ich auf eine Determinante von [mm]\vmat{ 0 & 1 \\ 1 & 0 }[/mm]
> = -1<0 also ist die hinreichende Bedingung nicht erfüllt  
> und wie weiß ich jetzt das kein lok.Extrema im Inneren des
> Bereiches liegt?


In dem Du nachweist, daß die Hesse-Matrix
an dieser Stelle indefinit ist.


Gruss
MathePower

Bezug
                                
Bezug
Lagrange'scher Multiplikator: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:35 Mo 14.05.2012
Autor: racy90

Bei welcher Stelle denn?

Mich verwirrt das etwas mit dem Bereich .



Bezug
                                        
Bezug
Lagrange'scher Multiplikator: Antwort
Status: (Antwort) fertig Status 
Datum: 09:40 Mo 14.05.2012
Autor: fred97


> Bei welcher Stelle denn?

(0,0)

FRED


>  
> Mich verwirrt das etwas mit dem Bereich .
>  
>  


Bezug
                                                
Bezug
Lagrange'scher Multiplikator: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:00 Mo 14.05.2012
Autor: racy90

Okay aber meine Matrix bleibt gleich weil ja ich kein x oder y in [mm] f_{xx} ,f_{xy} [/mm] und [mm] f_{yy} [/mm] habe oder

Bezug
                                                        
Bezug
Lagrange'scher Multiplikator: Antwort
Status: (Antwort) fertig Status 
Datum: 10:02 Mo 14.05.2012
Autor: fred97


> Okay aber meine Matrix bleibt gleich weil ja ich kein x
> oder y in [mm]f_{xx} ,f_{xy}[/mm] und [mm]f_{yy}[/mm] habe oder

Ja

FRED


Bezug
                                                                
Bezug
Lagrange'scher Multiplikator: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:38 Mo 14.05.2012
Autor: racy90

Dankeschön!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]