www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-SonstigesLagrangemultiplikatoren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Analysis-Sonstiges" - Lagrangemultiplikatoren
Lagrangemultiplikatoren < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lagrangemultiplikatoren: Tipp
Status: (Frage) beantwortet Status 
Datum: 10:47 Fr 23.01.2009
Autor: uecki

Aufgabe
Berechnen Sie den kleinsten und grössten Abstand vom Ursprung zur Ellipse
h(x,y)= [mm] x^2 [/mm] + 3xy [mm] +2y^2 [/mm] -4 = 0

(Hinweis: Machen Sie sich die Problemstellung zuerst grafisch klar und berücksichtigen Sie, dass die Wuzelfunktion monoton ist.)

Hallo,

ich habe zu der Aufgabe eine Lösung. Und man geht von Anfang an von der Zielfunktion f(x,y)= [mm] x^2 [/mm] + [mm] y^2 [/mm] aus. Und das verstehe ich nicht. Wie kommt man darauf? Wahrscheinlich irgendwie durch die Nebenbedingung h(x,y) ?
Lg

        
Bezug
Lagrangemultiplikatoren: Antwort
Status: (Antwort) fertig Status 
Datum: 11:00 Fr 23.01.2009
Autor: fred97


> Berechnen Sie den kleinsten und grössten Abstand vom
> Ursprung zur Ellipse
>  h(x,y)= [mm]x^2[/mm] + 3xy [mm]+2y^2[/mm] -4 = 0
>  
> (Hinweis: Machen Sie sich die Problemstellung zuerst
> grafisch klar und berücksichtigen Sie, dass die
> Wuzelfunktion monoton ist.)
>  Hallo,
>  
> ich habe zu der Aufgabe eine Lösung. Und man geht von
> Anfang an von der Zielfunktion f(x,y)= [mm]x^2[/mm] + [mm]y^2[/mm] aus. Und
> das verstehe ich nicht. Wie kommt man darauf?
> Wahrscheinlich irgendwie durch die Nebenbedingung h(x,y) ?
>  Lg


Sei (x,y) ein Punkt auf der Ellipse. Sein Abstand d(x,y) vom Ursprung ist doch gerade

                     $d(x,y) = [mm] \wurzel{x^2+y^2}$ [/mm]

Diesen Abstand sollst Du minimieren und maximieren. Nun überlege Dir:

    die Funktion d wird in einem Punkt [mm] (x_0,y_0) [/mm] am kleinsten (bzw. größten)

[mm] \gdw [/mm]

     die Funktion [mm] d^2 [/mm] wird in  [mm] (x_0,y_0) [/mm] am kleinsten (bzw. größten).

Es ist [mm] d^2(x,y) [/mm] = [mm] x^2+y^2. [/mm]

Nun wirst Du vielleicht fragen: warum nimmt man [mm] d^2 [/mm] und nicht d ?

Antwort: mit [mm] d^2 [/mm] lässt sich viel bequemer rechnen und man hat auch keinen Ärger mit der Differenzierbarkeit. Bedenke: die Wurzelfkt. ist im Nullpunkt nicht differenzierbar.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]