www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenLagranger Multiplikator
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Reelle Analysis mehrerer Veränderlichen" - Lagranger Multiplikator
Lagranger Multiplikator < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lagranger Multiplikator: Nachfrage
Status: (Frage) beantwortet Status 
Datum: 21:33 Fr 13.06.2008
Autor: Owen

Aufgabe
Bestimmen Sie die Extrema der Funktion:
[mm] f(x_{1},x_{2},x_{3},x_{4})=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2} [/mm]

Nebenbedingungen:
[mm] x_{1}+x_{2}=2 [/mm]
[mm] x_{2}+x_{3}+x_{4}=4 [/mm]

Hallo Leute,
Ich setze die Nebenbedingungen auf Null:
[mm] g_{1}=x_{1}+x_{2}-2=0 [/mm]
[mm] g_{2}=x_{2}+x_{3}+x_{4}-4=0 [/mm]

Nun die Hilfsfunktion:
[mm] F(x_{1},x_{2},x_{3},x_{4},\lambda_{1},\lambda_{2})=f(x_{1},x_{2},x_{3},x_{4})+\lambda_{1}*g_{1}(x_{1},x_{2},x_{3},x_{4})+\lambda_{2}*g_{2}(x_{1},x_{2},x_{3},x_{4}) [/mm]
[mm] =x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}+\lambda_{1}(x_{1}+x_{2}-2)+\lambda_{2}(x_{2}+x_{3}+x_{4}-4) [/mm]

[mm] F_{x1}=2_{x1}+\lambda_{1}=0 [/mm]
[mm] F_{x2}=2_{x2}+\lambda_{1}+\lambda_{2}=0 [/mm]
[mm] F_{x3}=2_{x3}+\lambda_{2}=0 [/mm]
[mm] F_{x4}=2_{x4}+\lambda_{2}=0 [/mm]
[mm] F_{\lambda_{1}}=x_{1}+x_{2}-2=0 [/mm]
[mm] F_{\lambda_{2}}=x_{2}+x_{3}+x_{4}-4=0 [/mm]

P= [mm] \pmat{ 2 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 2 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 2 \\ 0 & 1 & 1 & 1 & 0 & 0 & 4} [/mm]

[mm] x_{1}=0,4 [/mm] ; [mm] x_{2}=1,6 [/mm] ; [mm] x_{3}=1,2 [/mm] ; [mm] x_{4}=1,2 [/mm] ; [mm] \lambda_{1}=-0,8 [/mm] ; [mm] \lambda_{2}=,2,4 [/mm]

Das müsste also heißen, dass der Punkt  [mm] \vektor{0,4 \\ 1,6 \\ 1,2 \\ 1,2} [/mm] markant ist und nun auf Extrema untersucht werden müsste. Was geschieht jetzt mit dem Multiplikator und wie gehe ich nun generell weiter vor? Normalerweise müsste ich jetzt die Hessematrix bilden, da müsste ich jedoch unzählig viele Ableitungen berechnen. Danach berechne ich die Determinante und kann dann über [mm] f_{x1x2x3x4} [/mm]  Aussagen über Extrema treffen. Stimmt das so?

        
Bezug
Lagranger Multiplikator: Antwort
Status: (Antwort) fertig Status 
Datum: 22:10 Fr 13.06.2008
Autor: MathePower

Hallo Owen,

> Bestimmen Sie die Extrema der Funktion:
>  
> [mm]f(x_{1},x_{2},x_{3},x_{4})=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}[/mm]
>  
> Nebenbedingungen:
>  [mm]x_{1}+x_{2}=2[/mm]
>  [mm]x_{2}+x_{3}+x_{4}=4[/mm]
>  Hallo Leute,
>  Ich setze die Nebenbedingungen auf Null:
>  [mm]g_{1}=x_{1}+x_{2}-2=0[/mm]
>  [mm]g_{2}=x_{2}+x_{3}+x_{4}-4=0[/mm]
>  
> Nun die Hilfsfunktion:
>  
> [mm]F(x_{1},x_{2},x_{3},x_{4},\lambda_{1},\lambda_{2})=f(x_{1},x_{2},x_{3},x_{4})+\lambda_{1}*g_{1}(x_{1},x_{2},x_{3},x_{4})+\lambda_{2}*g_{2}(x_{1},x_{2},x_{3},x_{4})[/mm]
>  
> [mm]=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}+\lambda_{1}(x_{1}+x_{2}-2)+\lambda_{2}(x_{2}+x_{3}+x_{4}-4)[/mm]
>  
> [mm]F_{x1}=2_{x1}+\lambda_{1}=0[/mm]
>  [mm]F_{x2}=2_{x2}+\lambda_{1}+\lambda_{2}=0[/mm]
>  [mm]F_{x3}=2_{x3}+\lambda_{2}=0[/mm]
>  [mm]F_{x4}=2_{x4}+\lambda_{2}=0[/mm]
>  [mm]F_{\lambda_{1}}=x_{1}+x_{2}-2=0[/mm]
>  [mm]F_{\lambda_{2}}=x_{2}+x_{3}+x_{4}-4=0[/mm]
>  
> P= [mm]\pmat{ 2 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 2 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 2 \\ 0 & 1 & 1 & 1 & 0 & 0 & 4}[/mm]
>  
> [mm]x_{1}=0,4[/mm] ; [mm]x_{2}=1,6[/mm] ; [mm]x_{3}=1,2[/mm] ; [mm]x_{4}=1,2[/mm] ;
> [mm]\lambda_{1}=-0,8[/mm] ; [mm]\lambda_{2}=,2,4[/mm]


[mm]\lambda_{1}=\red{+}0,8[/mm]


>  
> Das müsste also heißen, dass der Punkt  [mm]\vektor{0,4 \\ 1,6 \\ 1,2 \\ 1,2}[/mm]
> markant ist und nun auf Extrema untersucht werden müsste.
> Was geschieht jetzt mit dem Multiplikator und wie gehe ich
> nun generell weiter vor? Normalerweise müsste ich jetzt die
> Hessematrix bilden, da müsste ich jedoch unzählig viele
> Ableitungen berechnen. Danach berechne ich die Determinante
> und kann dann über [mm]f_{x1x2x3x4}[/mm]  Aussagen über Extrema
> treffen. Stimmt das so?


Ja, das stimmt so,

Du kannst aber auch, aus den Nebenbedingungen 2 Variablen eliminieren und in
[mm]f\left(x_{1},x_{2},x_{3}, x_{4}\right)[/mm] einsetzen. Dann hast Du eine Funktion von nur 2 Variablen. Diese kannst Du dann auf Extrema untersuchen. Das Verfahren hier ist bekannt.

Gruß
MathePower

Bezug
                
Bezug
Lagranger Multiplikator: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:41 Fr 13.06.2008
Autor: Owen

Aufgabe
s.oben

Hallo MathePower,
danke für deine Antwort. Könntest du vielleicht nochmal erläutern, welche Variablen ich aus den Nebenbedingungen eleminieren kann, btw. wie ich das in diesem Fall machen muss. Weil ich sehe es momentan nicht.

Bezug
                        
Bezug
Lagranger Multiplikator: Antwort
Status: (Antwort) fertig Status 
Datum: 22:56 Fr 13.06.2008
Autor: MathePower

Hallo Owen,

> s.oben
>  Hallo MathePower,
>  danke für deine Antwort. Könntest du vielleicht nochmal
> erläutern, welche Variablen ich aus den Nebenbedingungen
> eleminieren kann, btw. wie ich das in diesem Fall machen
> muss. Weil ich sehe es momentan nicht.

Löse die Nebenbedingungen

[mm]x_{1}+x_{2}=2[/mm]

[mm]x_{2}+x_{3}+x_{4}=4[/mm]

nach [mm]x_{1}, \ x_{2}[/mm] auf.

[mm] \Rightarrow x_{1}= \ \dots \ , \ x_{2}=\ \dots \ [/mm]

Gruß
MathePower



Bezug
                                
Bezug
Lagranger Multiplikator: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:05 Fr 13.06.2008
Autor: Owen

Achso, alles klar, vielen Dank

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]