www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-NumerikLandausymbol
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Numerik" - Landausymbol
Landausymbol < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Landausymbol: Korrekte Notation
Status: (Frage) beantwortet Status 
Datum: 13:03 So 15.10.2017
Autor: vwxyz

Aufgabe
Beweisen Sie die folgenden Aussagen:
a) [mm] x^{5}+x^{3}+x=\mathcal{O}(|x|), [/mm] für x [mm] \to [/mm] 0
b) [mm] x^{5}+x^{3}+x=\mathcal{O}(|x|^{5}), [/mm] für x [mm] \to \infty [/mm]

Sei x > 0. Untersuchen Sie, für welche Exponenten [mm] \alpha, \beta \in \IR [/mm] gilt:
c) [mm] x^{\alpha}= \mathcal{O}(x^{\beta}) [/mm] für x [mm] \to [/mm] 1 ; [mm] x^{\alpha}= o(x^{\beta}) [/mm] für x [mm] \to [/mm] 1
d) [mm] x^{\alpha}= \mathcal{O}(x^{\beta}) [/mm] für x [mm] \to \infty [/mm] ; [mm] x^{\alpha}= o(x^{\beta}) [/mm] für x [mm] \to \infty [/mm]

Also ich habe mit dem Verständnis der Aufgabe nicht so ein Problem. Aufgabe a) kann ich relativ schnell mit Hilfe von L'Hospital beweisen und b) durch ausklammern.

Also bei der a) habe ich dann:
[mm] \limes_{x\rightarrow 0} \bruch{x^{5}+x^{3}+x}{|x|} \Rightarrow \limes_{x\rightarrow 0} \bruch{5x^{4}+3x^{2}+1}{|1|}=\bruch{1}{|1|} [/mm] und da das Landau-Symbol ja als lim sup definiert ist es nur die 1 und somit kleiner [mm] \infty. [/mm]

Bei der b habe ich:
[mm] \limes_{x\rightarrow 0} \bruch{x^{5}+x^{3}+x}{|x|^5}=\limes_{x\rightarrow 0} \bruch{x^{5}(1+\bruch{1}{x^{2}}+\bruch{1}{x^{4}})}{|x|^5} [/mm]

Die Klammer strebt gegen 1 und oben und unten kürzen sich die [mm] x^{5} [/mm] zu |1|.

Meine Frage hierzu, kann ich dies einfach so anwenden mit der Begründung, dass ich nur das Supremum suche und so, nicht separat der positive und negative Betrag betrachtet werden muss. Denn eigentlich darf ich doch L'Hospital nicht anwenden, weil die Betragfunktion an der Stelle nicht differenzierbar ist.


Zu den Aufgaben c) und d) habe ich auch nicht so große Probleme mit dem herausfinden der Exponenten aber sehr wohl mit dem Verständnis und der Notation.
Die d) ist für mich persönlich einfacher:

[mm] x^{\alpha}= \mathcal{O}(x^{\beta}) [/mm] für x [mm] \to \infty [/mm] bedeutet ja:

[mm] \limes_{x\rightarrow \infty} |\bruch{x^{\alpha}}{x^{\beta}}|<\infty [/mm] und das gilt nur für [mm] \alpha \le \beta, [/mm] weil [mm] |x^{\alpha-\beta}|<\infty [/mm] sein muss und hierfür der Exponent 0 oder negativ sein muss.

Analog dazu: [mm] x^{\alpha}= o(x^{\beta}) [/mm] für x [mm] \to \infty [/mm] bedeutet:

[mm] \limes_{x\rightarrow \infty} |\bruch{x^{\alpha}}{x^{\beta}}|=0 [/mm] und das gilt nur für [mm] \alpha [/mm] < [mm] \beta, [/mm] weil [mm] x^{\alpha-\beta}=0 [/mm] sein muss und hier der Exponent dann negativ werden muss.

Bei der c) erscheint mir das schon etwas schwieriger.

[mm] x^{\alpha}= \mathcal{O}(x^{\beta}) [/mm] für x [mm] \to [/mm] 1 bedeutet ja dann: [mm] \limes_{x\rightarrow 1} |\bruch{x^{\alpha}}{x^{\beta}}|<\infty. [/mm] Es muss also gelten [mm] \limes_{x\rightarrow 1} |x^{\alpha-\beta}|<\infty. [/mm]
Wenn x nun gegen 1 strebt kann ich dass doch gleich [mm] 1^{\alpha-\beta} [/mm] setzen und dann gilt das doch für alle Kombinationen von [mm] \alpha [/mm] und [mm] \beta [/mm]

Analog bedeutet [mm] x^{\alpha}= o(x^{\beta}) [/mm] für x [mm] \to [/mm] 1 also:
[mm] \limes_{x\rightarrow 1} \bruch{x^{\alpha}}{x^{\beta}}=0 [/mm] und das gilt nur für alle [mm] \alpha [/mm] und [mm] \beta [/mm] für die [mm] |1^{\alpha-\beta}|=0 [/mm] gilt. Und demzufolge gibt es keine Exponenten.

Zur c) wäre meine Frage also, ist das soweit richtig? Oder muss ich hier auch wegen dem lim sup die Werte vor 1 betrachten zumindest beim ersten Teil der Aufgabe.
Und die zweite Frage wäre auch wie notiere ich das mathematisch korrekt in einen Beweis. Für mich ist das finden dieser Lösungen recht trivial, da ich mich ja nur fragen muss wann es konvergiert und wann es divergiert. Aber wie schreibe ich das nun konkret auf? Muss ich da die [mm] \varepsilon [/mm] Schreibweise benutzen? Oder reicht das schon so?

Vielen Dank schon mal



        
Bezug
Landausymbol: Antwort
Status: (Antwort) fertig Status 
Datum: 12:33 Di 17.10.2017
Autor: leduart

Hallo
um Beweise zu formulieren ist denke ich die Def von O und o mit einer Konstanten einfacher
f [mm] \in \mathcal{O}(g) \exists\ [/mm] C > 0\ [mm] \exists\ \varepsilon [/mm] > 0 \ [mm] \forall\ [/mm] x [mm] \in \lbrace [/mm] x: d(x, [mm] a)<\varepsilon\rbrace: [/mm] |f(x)| [mm] \le C\cdot|g(x)| [/mm]
für x gegen a. und die entsprechende Def für [mm] \mathcal{o}(g) [/mm] bei der du [mm] \exists\ [/mm] C  durch alle C ersetzt.
Gruß leduartt

Bezug
                
Bezug
Landausymbol: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 06:26 Mi 18.10.2017
Autor: vwxyz

HI,
mit der Definition habe ich es auch bereits versucht und gebe dir Recht viel es mir einfacher. Das Dumme ist nur, dass wir diese Schreibweise in Ihrem Skript bisher noch nicht hatten. Folgt diese Definition relativ trivial aus Ihrer oder muss ich da noch irgendwas nachweisen, dass beide äquivalent zueinander sind.

Andernfalls ist halt immer noch die Frage ob die Aufgabe so ausreichend bewiesen ist.

Bezug
                        
Bezug
Landausymbol: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:20 Fr 20.10.2017
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]