www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPartielle DifferentialgleichungenLaplace-Operator
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Partielle Differentialgleichungen" - Laplace-Operator
Laplace-Operator < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Laplace-Operator: Harmonizität
Status: (Frage) beantwortet Status 
Datum: 10:15 Sa 16.11.2013
Autor: mikexx

Aufgabe
Morgen,

es soll nachgerechnet werden, dass die Funktion

[mm] $f(x,\xi)=\frac{1-\lVert x\rVert^2}{\Vert x-\xi\rVert^n}, x\in B_1(0)\subset\mathbb{R}^n,\xi\in S_1(0)$ [/mm]

aufgefasst als Funktion in $x$ in [mm] $B_1(0)\setminus\left\{0\right\}$ [/mm]

eine harmonische Funktion ist.


Das ist natürlich eine Menge Rechenarbeit.



Ich muss also bestätigen, dass

[mm] $\Delta [/mm] f=0$.

Dazu habe ich mir jetzt mal irgendein [mm] $i\in\left\{1,\dots,n\right\}$ [/mm] genommen und versucht, die zweite partielle Ableitung nach [mm] $x_i$ [/mm] zu berechnen.

Ich weiß nicht genau, ob ich hier die ganze Rechnung hinschreiben sollte, weil sie eher länglich ist, aber andererseits müssen Sie meine Rechnung ja irgendwie auch nachvollziehen können, um mir zu sagen, wo ich falsch oder richtig liege.

Ich habe also zunächst die erste partielle Ableitung mit der Quotientenregel ausgerechnet und ich erhalte

[mm] $f_{x_i}=\frac{-2x_i\lVert x-\xi\rVert^n-(1-\lVert x\rVert^2)\frac{n}{2}\lVert x-\xi\rVert^{n-2}(2x_i-2\xi_i)}{\lVert x-\xi\rVert^{2n}}$ [/mm]

Dabei habe ich unter Anderem auch die Kettenregel verwendet, z.B. um [mm] $\frac{\partial}{\partial x_i}(\lVert x-\xi\rVert^n)$ [/mm] zu berechnen. Zur Kontrolle:

[mm] $\frac{\partial}{\partial x_i}(\lVert x-\xi\rVert^n)=\frac{1}{2}n\lVert x-\xi\rVert^{n-2}(2x_i-2\xi_i)$ [/mm]



Vielleicht erstmal nur bis zu dieser Stelle.
Hätte jemand Lust und Muße, mir zu sagen, ob ich bis hierhin korrekt gerechnet habe?


Schöne Grüße!

mikexx


        
Bezug
Laplace-Operator: Zusatzfrage
Status: (Frage) beantwortet Status 
Datum: 13:11 Sa 16.11.2013
Autor: mikexx

Ich frage mal etwas spezieller.

Was ist die partielle Ableitung von [mm] $\lVert x-\xi\rVert^n$ [/mm] nach [mm] $x_i$? [/mm]

Ich habe das, wie gesagt, mit der Kettenregel gemacht.

Zuerst habe ich

[mm] $\lVert x-\xi\rVert^n$ [/mm] geschrieben als [mm] $(\sum_{i=1}^{n}(x_i-\xi_i)^2)^{n/2}$. [/mm]

Als innere Funktionen habe ich dann [mm] $u:=\lVert x-\xi\rVert^2=\sum_{i=1}^{n}(x_i-\xi_i)^2$ [/mm] gesetzt und hiervon ist die partielle Ableitung nach [mm] $x_i$ [/mm] doch [mm] $2x_i-2\xi_i$, [/mm] oder?

Die äußere Funktion [mm] $z:=u^{n/2}$ [/mm] ist, nach u abgeleitet: [mm] $\frac{n}{2}u^{\frac{n}{2}-1}$ [/mm] und nach Resubstituieren ist das

[mm] $\frac{n}{2}\lVert x-\xi\rVert^{n-2}$. [/mm]


Insgesamt komme ich also auf die partielle Ableitung

[mm] $\frac{n}{2}\lVert x-\xi\rVert^{n-2}(2x_i-2\xi_i)$. [/mm]


Stimmt das?

Bezug
        
Bezug
Laplace-Operator: Antwort
Status: (Antwort) fertig Status 
Datum: 10:54 Mo 18.11.2013
Autor: Gonozal_IX

Hallo mikex,

tut mir Leid, dass noch niemand vorher darauf geantwortet hat, obwohl deine Frage eigentlich sehr vorbildlich gestellt war.

Dann wollen wir mal :-)


> [mm]f_{x_i}=\frac{-2x_i\lVert x-\xi\rVert^n-(1-\lVert x\rVert^2)\frac{n}{2}\lVert x-\xi\rVert^{n-2}(2x_i-2\xi_i)}{\lVert x-\xi\rVert^{2n}}[/mm]

$ = [mm] \frac{-2x_i\lVert x-\xi\rVert^n- n (1-\lVert x\rVert^2)\lVert x-\xi\rVert^{n-2}(x_i-\xi_i)}{\lVert x-\xi\rVert^{2n}}$ [/mm]

Und als Tipp: Nun reicht es, den Zähler zu betrachten!
Klammere dann [mm] $\lVert x-\xi\rVert^{n-2}$ [/mm] aus und fasse geeignet zusammen.

Gruß,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]