www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraLateinisches Quadrat / Matrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Lateinisches Quadrat / Matrix
Lateinisches Quadrat / Matrix < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lateinisches Quadrat / Matrix: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:56 Fr 03.12.2004
Autor: sebti

Ich  brauche Hilfe um diese Aufgabe zu lösen.

Die Aufgabe lautet :

Eine (n x n)-Matrix heißt

´´ Lateinisches Quadrat'' , wenn jede Zeile und Spalte jede der Zahlen
1,. . . ., n genau einmal enthält. Zu einer Gruppe (G, o) der Ordnung n, die wir mit ({1, . . . . , n}. o )
identifizieren können, betrachten wir ihre Verknüpfungstabelle, welche sich als Matrix M auffassen
lässt mit :
                    [mm] m_{ij} [/mm] :=  i o j         (i, j = 1, . . . . , n) .

Zeigen Sie, dass die Verknüpfungstabelle einer jeden Gruppe ein Lateinisches Quadrat repräsentiert.

Stellt umgekehrt auch jedes Lateinische Quadrat die Verknüpfungstabelle einer endlichen Gruppe.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Lateinisches Quadrat / Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 19:50 Fr 03.12.2004
Autor: Hanno

Hallo!

Zur Lösung deiner Aufgabe musst du zeigen, dass in jeder Zeile und Spalte jedes Element der Gruppe genau ein Mal auftaucht. Dies kannst du leicht zeigen, indem du annimmst, es gäbe Elemente [mm] $x,a,b\in [/mm] G$ mit [mm] $x\circ a=x\circ [/mm] b$ oder [mm] $a\circ x=b\circ [/mm] x$. Dann du nun links bzw. rechtsseitig mit dem Inversen [mm] $x^{-1}\in [/mm] G$ von x verknüpfst und das Assoziativgesetz anwendest, wirst du sicher auf die Lösung kommen!

Versuch's mal!

Liebe Grüße,
Hanno

Bezug
        
Bezug
Lateinisches Quadrat / Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 19:56 Fr 03.12.2004
Autor: Stefan

Hallo sebti!

Zum ersten Teil hat die Hanno eine sehr schöne Antwort gegeben. Nun zum zweiten Teil:

> Stellt umgekehrt auch jedes Lateinische Quadrat die
> Verknüpfungstabelle einer endlichen Gruppe.

Diesen Teil habe ich schon einmal falsch im Forum beantwortet, fürchte ich, nur leider finde ich die Stelle nicht mehr. [grummel]

Die Aussage stimmt nämlich nicht.

Es handelt sich im Allgemeinen nur um eine endliche []Quasigruppe.

Versuch doch mal ein Gegenbeispiel zu finden...

Liebe Grüße
Stefan


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]