www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisLaurent-Reihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Komplexe Analysis" - Laurent-Reihe
Laurent-Reihe < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Laurent-Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:32 Mi 31.01.2007
Autor: Frank26

Aufgabe
Entwickeln Sie [mm] f(z)=\bruch{1}{1+2z^2+z^4} [/mm] in allen maximalen Kreisringen um -i in ihre Laurent-Reihe

Hallo,

ich habe folgendes Problem bei der obigen Aufgabe. Die Singularitäten sind ja bei -i und i, so dass die Kreisringe einmal 0 als innerer und 2 als äußerer Radius und einmal 2 und unendlich haben. Wenn ich die Funktion auf dem Ring K(-i,0,2) entwickeln möchte, habe ich
[mm] f(z)=(z+i)^{-2}\bruch{1}{(z-i)^2}, [/mm] also muss im Prinzip [mm] \bruch{1}{(z-i)^2} [/mm] entwickelt werden. Eigentlich haben wir es immer so gemacht, dass wir es auf die geometrische Reihe zurückgeführt haben, aber das geht ja eigentlich nur bei linearen Termen oder?
Muss ich hier wirkich die Integrale für die Koeffizienten ausrechnen?

Danke Frank

        
Bezug
Laurent-Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 09:05 Do 01.02.2007
Autor: Volker2

Hallo Frank,

wenn Du die Summenformel für die geom Reihe auf beiden Seiten differenzierst, bekommst Du
$$
[mm] \frac{1}{(1-x)^2}=\left(\frac{1}{(1-x)}\right)'=\sum_{n=0}^\infty (x^n)'=\sum_{n=0}^\infty [/mm] n [mm] x^{n-1}, [/mm]
$$
was Dir dann vielleicht weiterhelfen wird. Volker

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]