www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisLaurentreihe
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Komplexe Analysis" - Laurentreihe
Laurentreihe < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Laurentreihe: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:32 Do 19.07.2007
Autor: peder

Aufgabe
Bestimmen Sie die Laurententwicklung von f in
[mm] A_{2}={z \in \IC: 2 \le |z| \le 4} [/mm]
mit f(z) = [mm] \bruch{4}{z(z^2 - 2)} [/mm]

Hallo zusammen,
also ansich dürfte das nicht weiter schwer sein, aber irgendwie steh ich auf dem Schlauch :(!
Also habe f(z) mittel PBZ in [mm] \bruch{-2}{z} [/mm] + [mm] \bruch{1}{z-\wurzel{2}} [/mm] + [mm] \bruch{1}{z+\wurzel{2}} [/mm] zerlegt.

[mm] \bruch{-2}{z} [/mm] passt
für die anderen beiden Summanden bekomme ich aber nur Reihen hin für |z| [mm] \le \wurzel{2} [/mm] bzw. |z| [mm] \ge \wurzel{2} [/mm]
(mein Ansatzt war z rausziehen und somit geometrische Rh. basteln)

kann mir jemand nen Tipp geben?

LG, Michi

        
Bezug
Laurentreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 18:06 Do 19.07.2007
Autor: cutter

Hi
Ich wuerde folgendes machen

[mm] \frac{1}{z-\sqrt{2}}= \frac{1}{z} \cdot \frac{1}{1-\frac{\sqrt{2}}{z}} [/mm]

und aus der Bedingung [mm] \frac{2}{|z|}<1 [/mm] sollte doch auch  [mm] \frac{\sqrt{2}}{|z|}<1 [/mm] folgen ...
somit kannst du die geometrische Reihe anwenden.
Grüße

Bezug
                
Bezug
Laurentreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:16 Do 19.07.2007
Autor: peder

"Ich wuerde folgendes machen

$ [mm] \frac{1}{z-\sqrt{2}}= \frac{1}{z} \cdot \frac{1}{1-\frac{\sqrt{2}}{z}} [/mm] $"


das ist genau das, was ich auch gemacht habe und entsprechend für
$ [mm] \bruch{1}{z+\wurzel{2}} [/mm] $
bekomme ich
$ [mm] \frac{1}{z+\sqrt{2}}= \frac{1}{z} \cdot \frac{1}{1- - \frac{\sqrt{2}}{z}} [/mm] $

aber damit bekomme ich doch die geometrischen Reihen für |z| > [mm] \wurzel{2} [/mm] (im ersten Fall) und |z| < [mm] \wurzel{2} [/mm] (im zweiten Fall) aber ist das dann wirklich die entwicklung in $ [mm] A_{2}=\{z \in \IC: 2 \le |z| \le 4\} [/mm] $ ?

damit habe ich Probleme bzw. einen Denkfehler.

Michi

Bezug
                        
Bezug
Laurentreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 21:17 Do 19.07.2007
Autor: cutter

ne das sollte richtig sein ...
mach einfach mal weiter und dann sehen wir weiter: )

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]