www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisLebesgue-Integral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - Lebesgue-Integral
Lebesgue-Integral < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lebesgue-Integral: Frage
Status: (Frage) beantwortet Status 
Datum: 14:15 So 30.01.2005
Autor: mtuente

Hallo!
Ich studiere Mathe auf Gymnasiallehramt und wir haben jetzt in Analysis II mit dem Lebesgue-Integral angefangen. Mein Problem ist, dass ich mir das alles nicht so gut vorstellen kann. Kann man das Lebesgue-Integral auch veranschaulichen (wie beim Riemannschen Integral) und wenn wie?
Vielleicht kann mir ja auf meine Frage irgendeiner eine Antwort geben. Ich würde mich freuen,
viele Grüße, Michaela


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Lebesgue-Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 15:33 So 30.01.2005
Autor: Micha

Hallo Michaela!

Also wenn ich mal frei aus dem Analysis-Script meines Professors aus der Einleitung zitieren darf:

"Es gibt verschiedene Integralbegriffe, zum Beispiel
• das Regelintegral
• das Riemannsche Integral, das lange Zeit in den Lehrbüchern der Analysis Standard
war, und
• das Lebesguesche Integral, das wir in diesem Semester betrachten wollen.
Für Treppenfunktionen, ja für alle ”anständigen“ Funktionen, liefern diese Integrale denselben
Wert. Sie unterscheiden sich aber hinsichtlich der jeweiligen Menge der ”integrierbaren“
Funktionen; diese Menge vergrößert sich bei den obigen drei Integralbegriffen in der angegebenen
Reihenfolge.
Aber es ist nicht das Ziel, möglichst ”exotische“ Funktionen auch noch integrieren zu können,
es geht um andere Vorteile: In vielen Anwendungen der Analysis möchte man Grenzwertprozesse
in Funktionenräumen, zum Beispiel im Raum der integrierbaren Funktionen, durchführen.
Ein Beispiel aus der Theorie der Differentialgleichungen haben Sie im letzten Semester beim
Beweis des Satzes von Picard-Lindelöf gesehen. Oder man möchte, dass unter möglichst
allgemeinen Voraussetzungen
[mm]\lim_{n \to \infty} \integral{f_n} = \integral {\lim_{n \to \infty} f_n} [/mm]

gilt. Auf diesem Feld gewinnt das Lebesgueintegral um Längen!
Der wesentliche Unterschied in den Definitionen kommt (jedenfalls bei unserem Zugang)
folgendermaßen zustande:
Zunächst definiert man das Integral für Treppenfunktionen auf die offensichtliche Weise.
Dann erweitert man es auf Funktionen, die sich ”gut“ durch Treppenfunktionen approximieren
lassen. Der Unterschied liegt in der Definition von ”gut“.
• Bei den Regelfunktionen betrachtet man Grenzwerte von Folgen von Treppenfunktionen
im Sinne gleichmäßiger Konvergenz.
• In der Riemannschen Theorie betrachtet man Funktionen, die sich zwischen zwei
Treppenfunktionen mit beliebig klein vorgegebener Integraldifferenz einsperren lassen
(Sandwiching).
• In der Lebesgueschen Theorie schließlich betrachtet man Grenzwerte von monotonen
Folgen von Treppenfunktionen. "


Um es nochmal kurz zusammenzufassen: Der Wesentlich Unterschied ist genau der letzte Punkt. Das Lebesgue-Integral benötigt eine Folge von Treppenfunktionen, die monoton ist, die konvergieren müssen und deren Integrale dazu sich "vernünftig" verhalten. Dann weißt man der Grenzfolge der Treppenfunktionen den Wert des Integrales zu. Im Unterschied zum Regelintegral muss die Treppenfunktionsfolge aber nicht gleichmäßig konvergieren.

Gruß Micha ;-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]