www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisLebesgue-Integral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - Lebesgue-Integral
Lebesgue-Integral < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lebesgue-Integral: Grenzwert-Aufgabe
Status: (Frage) beantwortet Status 
Datum: 11:44 Di 05.04.2005
Autor: Bastiane

Hallo noch einmal! ;-)
Hier noch eine Aufgabe von Hans Mathechef, von der ich noch keine Lösung habe:

Hans Mathechef glaubt, folgendes schönes Resultat gefunden zu haben:
Sei [mm] (\Omega,\cal{A},\mu) [/mm] ein Maßraum mit [mm] \mu(\Omega)<\infty [/mm] (also z. B. [mm] \Omega=(-1,1) [/mm] mit dem Lebesgue Maß). Sei [mm] f:\Omega\to\IR [/mm] eine messbare Funktion. Seien [mm] p_k\in[1,\infty) [/mm] mit [mm] p_k\to\infty. [/mm] Es existiere der Grenzwert [mm] \lim_{p_k\to\infty}||f||_{p_k}. [/mm] Dann gilt
[mm] \lim_{p_k\to\infty}||f||_{p_k}=||f||_{\infty}. [/mm]
Die Funktion f ist also auch wesentlich beschränkt.

Hat Hans Mathechef Recht?

Eigentlich könnte ich mir vorstellen, dass das gilt, aber wie würde man das beweisen? Oder gibt es vielleicht doch ein Gegenbeispiel?

Viele Grüße
Bastiane
[kopfkratz2]

        
Bezug
Lebesgue-Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 17:10 Di 05.04.2005
Autor: Stefan

Liebe Christiane!

Entschuldige bitte zunächst, dass ich so lange für diese Aufgabe benötigt habe, obwohl sie mir direkt hätte klar sein müssen. [kopfschuettel] [bonk]

Die Aussage von Hans Mathechef ist richtig.

Im Falle [mm] $\Vert [/mm] f [mm] \Vert_{\infty}=0$ [/mm] ist die Aussage trivial. Sei also im Folgenden [mm] $\Vert [/mm] f [mm] \Vert_{\infty}>0$ [/mm] vorausgesetzt. Weiterhin sei oBdA $f [mm] \ge [/mm] 0$.

Ich zeige zunächst:

[mm] $\Vert [/mm] f [mm] \Vert_{\infty} \le \lim\limits_{p_k \to \infty} \Vert [/mm] f [mm] \Vert_{p_k}$. [/mm]

Wäre dem nicht so, so gäbe es ein [mm] $\alpha>0$ [/mm] mit

[mm] $\lim\limits_{p_k \to \infty} \Vert [/mm] f [mm] \Vert_{p_k} [/mm] < [mm] \alpha [/mm] < [mm] \Vert [/mm] f [mm] \Vert_{\infty}$. [/mm]

Dann wäre [mm] $\{f>\alpha\}$ [/mm] keine [mm] $\mu$-Nullmenge [/mm] und aus

[mm] $\alpha^{p_k} \cdot 1_{\{f>\alpha\}} \le f^{p_k}$ [/mm]

folgt:

[mm] $\alpha \cdot \mu(\{f>\alpha\})^{\frac{1}{p_k}} \le \Vert [/mm] f [mm] \Vert_{p_k}$. [/mm]

Grenzwertbildung liefert wegen [mm] $\lim\limits_{p_k \to \infty} \mu(\{f>\alpha\})^{\frac{1}{p_k}} [/mm] =1$:

[mm] $\alpha \le \lim\limits_{p_k \to \infty} \Vert [/mm] f [mm] \Vert_{p_k}$, [/mm]

Widerspruch.

Zu zeigen bleibt also:

[mm] $\lim\limits_{p_k \to \infty} \Vert [/mm] f [mm] \Vert_{p_k} \le \Vert [/mm] f [mm] \Vert_{\infty}$. [/mm]

Dazu können wir [mm] $\Vert [/mm] f [mm] \Vert_{\infty} [/mm] < [mm] \infty$ [/mm] voraussetzen, denn ansonsten ist nichts zu zeigen.

Dann gilt aber:

[mm] $f^{p_k} \le \Vert [/mm] f [mm] \Vert_{\infty}^{p_k}$ $\mu$-fast [/mm] sicher

und folglich:

[mm] $\lim\limits_{p_k \to \infty} \Vert [/mm] f [mm] \Vert_{p_k} [/mm] = [mm] \lim\limits_{p_k \to \infty} \left( \int |f(x)|^{p_k}\, d\mu \right)^{\frac{1}{p_k}} \le \Vert [/mm] f [mm] \Vert_{\infty} \lim\limits_{p_k \to \infty} \mu(\Omega)^{\frac{1}{p_k}} [/mm] = [mm] \Vert [/mm] f [mm] \Vert_{\infty}$. [/mm]

(Hier geht die Endlichkeit des Maßes ein.)

Damit ist alles gezeigt. [sunny]

Liebe Grüße
Stefan Möchtegernmathechef

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]