www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenLebesgue-Maß
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Reelle Analysis mehrerer Veränderlichen" - Lebesgue-Maß
Lebesgue-Maß < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lebesgue-Maß: Verständnisfrage
Status: (Frage) beantwortet Status 
Datum: 13:15 So 30.03.2008
Autor: BertanARG

Hi,

kann mir jemand eine anschauliche Erklärung des Lebesgue-Maßes geben? Aus der Definiton kann ich mir grob etwas vorstellen, aber konkret kann ich mir nichts darunter vorstellen.

"Der Wahrscheinlichkeitsraum [0,1] mit dem Lebesgue-Maß liefert ein Gegenbeispiel: Die Menge der irrationalen Zahlen hat Maß 1, aber nicht jede Zahl aus [0,1] ist irrational."

Das habe ich neulich gelesen, verstehe aber nicht welche Rolle das Lebesgue-Maß hierbei spielt.


Viele Grüße und danke schon mal

        
Bezug
Lebesgue-Maß: Antwort
Status: (Antwort) fertig Status 
Datum: 14:49 So 30.03.2008
Autor: Blech


> Hi,
>  
> kann mir jemand eine anschauliche Erklärung des
> Lebesgue-Maßes geben? Aus der Definiton kann ich mir grob
> etwas vorstellen, aber konkret kann ich mir nichts darunter
> vorstellen.

Das Lebesgue-Maß ist das "natürliche Maß". Es ordnet Intervallen ihre Länge und Flächen ihre Fläche zu.

Wenn Du eine Funktion [mm] $f:\IR\to\IR$ [/mm] bzgl. des Lebesgue-Maßes integrierst, dann ist der Wert des Integrals einfach die Fläche unter dem Graphen. Der Grund da mit dem Lebesgue-Integral und damit mit dem Lebesgue-Maß zu arbeiten, sind Funktionen wie zum Beispiel
[mm] $$f:\IR\to\IR;\quad x\mapsto\begin{cases} e^{-x^2}&\text{falls }x\in\IR\setminus\IQ\\ 0&\text{falls }x\in\IQ\end{cases}$$ [/mm]
Intuitiv hat das Integral die gleiche Fläche wie das der Funktion [mm] $g:\IR\to\IR$ $x\mapsto e^{-x^2}$, [/mm] da für jede Stelle, wo f=0 ist, unendlich viele existieren, wo es den gleichen Wert hat wie g. D.h. wir ziehen nur einen unendlich kleinen Teil vom Wert des Integrals ab. Und mit dem Lebesgue-Maß erzielen wir das Ergebnis.


>  
> "Der Wahrscheinlichkeitsraum [0,1] mit dem Lebesgue-Maß
> liefert ein Gegenbeispiel: Die Menge der irrationalen
> Zahlen hat Maß 1, aber nicht jede Zahl aus [0,1] ist
> irrational."

Wir brauchen ein Maß, damit wir überhaupt Mengen und Intervallen einen Wert zuweisen können (d.h. wir messen sie). Das Lebesgue-Maß weißt ihnen ihre intuitive Länge zu.
Die Menge [mm] $\{x\in(\IR\setminus\IQ)\cap [0,1]\}$, [/mm] d.h. alle irrationalen Zahlen in [0,1], hat das Lebesgue-Maß 1. Die Länge des Intervalls ändert sich nicht, wenn wir einen unendlich kleinen Teil der Strecke von 0 nach 1 entfernen:
[mm] $\lambda(\{x\in(\IR\setminus\IQ)\cap [0,1]\})$ [/mm]
[mm] $=\lambda(\{x\in\IR\cap [0,1]\})-\lambda(\{x\in\IQ\cap [0,1]\})$ [/mm]
[mm] $=\lambda(\{x\in\IR\cap [0,1]\})-\lambda\left(\bigcup_{q\in\IQ\cap[0,1]}q\right)$ [/mm]
[mm] $=1-\sum_{q\in\IQ\cap[0,1]}\lambda(q)=1-0$ [/mm]
$=1$

Wir können eine beliebige Menge mit abzählbar-unendlich vielen Punkten entfernen, ohne das Maß des Intervalls zu ändern, weil überabzählbar unendlich viele Punkte verbleiben.

Ich weiß nicht, was der Kontext von dem Satz oben ist, aber grundsätzlich gilt auf anderen Räumen mit anderen Maßen das nicht, z.B. ist auf [mm] $\{1,2,3,4,5,6\}$ [/mm] mit dem Maß [mm] $\gamma(A)=|A|$ [/mm] (d.h. ein Würfelwurf; jedes Ergebnis ist gleichwahrscheinlich) jeder Punkt bedeutend. Wenn Du aus [mm] $B=\{1,2,5,6\}$ [/mm] ein beliebiges Element rausnimmst, dann ändert sich das Maß. (Bsp. [mm] $\gamma(B)=|B|=4$; $\gamma(\{1,2,5\})=3$) [/mm]

EDIT: Danke, es ist immer schön, wenn man hört, daß Antworten tatsächlich geholfen haben. =)
Ich hab auch ein paar Tippfehler korrigiert (zweimal waren Klammern zu viel, einmal zu wenig), die aber nicht wirklich was ausgemacht haben.

Bezug
                
Bezug
Lebesgue-Maß: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:37 Mo 31.03.2008
Autor: BertanARG

Hi,

danke, super Erklärung. Jetzt kann ich mir was darunter vorstellen.


Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]