www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenLebesgueintegrierbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Funktionen" - Lebesgueintegrierbarkeit
Lebesgueintegrierbarkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lebesgueintegrierbarkeit: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:59 Sa 24.11.2007
Autor: Marty

Aufgabe
Die Funktion f: [mm] \IR [/mm] -> [mm] \IR [/mm] sei definiert durch [mm] f(x):=x^2e^{-x^2} [/mm] und die Funktion [mm] f_\epsilon(x):=\bruch{f(\epsilon x)}{\epsilon}. [/mm]
a) Zeigen Sie, dass [mm] f_\epsilon \in L^1 (\IR) [/mm] für alle [mm] \epsilon [/mm] > 0 (z.B. mit Hilfe einer Majorante) und
[mm] \integral_{-\infty}^{\infty}{f_\epsilon(x) dx} [/mm] = [mm] \integral_{-\infty}^{\infty}{f(x) dx} [/mm] für alle [mm] \epsilon [/mm] > 0

Bei der a) soll ich also zeigen, dass [mm] f_\epsilon [/mm] Lebesgueintegrierbar ist...
Hat jemand einen Tipp für mich, wie ich die Majorante dafür wählen könnte?
[mm] f_\epsilon (x)=\bruch{(\epsilon x)^2 e^{-(\epsilon x)^2}}{\epsilon} [/mm]

Gruß Marty

        
Bezug
Lebesgueintegrierbarkeit: Tipp
Status: (Antwort) fertig Status 
Datum: 02:04 So 25.11.2007
Autor: generation...x

Ein paar gezielte Fragen: Welchen Wert nimmt [mm]e^{-x^2}[/mm] maximal an? Wo? Ändert sich was, wenn du [mm]e^{-(\epsilon x)^2}[/mm] betrachtest? Was folgt daraus für die Majorante? :-)

Bezug
                
Bezug
Lebesgueintegrierbarkeit: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 21:07 So 25.11.2007
Autor: Marty

Hallo,

vielen Dank für die Antwort, ich komme damit aber trotzdem nicht zurecht...

> Ein paar gezielte Fragen: Welchen Wert nimmt [mm]e^{-x^2}[/mm]
> maximal an? Wo? Ändert sich was, wenn du [mm]e^{-(\epsilon x)^2}[/mm]
> betrachtest? Was folgt daraus für die Majorante? :-)

[mm]e^{-x^2}[/mm] geht für x -> [mm] \infty [/mm] gegen 0
Die Ableitung ist [mm](-x^2)e^{-x^2}[/mm]
Also wird f(x) maximal  bei x=0
Wenn ich [mm]e^{-(\epsilon x)^2}[/mm] betrachte ändert sich nichts!
Was sagt mir das jetzt über die Majorante?

Gruß Marty



Bezug
                        
Bezug
Lebesgueintegrierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 02:57 Mo 26.11.2007
Autor: generation...x

Wenn [mm]e^{-\epsilon x^2}[/mm] bei 0 maximal wird (wie du sehr richtig erkannt hast) und dort den Wert 1 annimmt, dann ist es wohl nicht unvernünftig anzunehmen, dass stets gilt:

[mm](\epsilon x)^2 \ge (\epsilon x)^2 \ e^{-\epsilon x^2}[/mm]

Wie sieht also die gesuchte Majorante aus? Das war jetzt eine Suggestivfrage... ;-)

Bezug
                                
Bezug
Lebesgueintegrierbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 03:13 Mo 26.11.2007
Autor: MatthiasKr

Hi,
> Wenn [mm]e^{-\epsilon x^2}[/mm] bei 0 maximal wird (wie du sehr
> richtig erkannt hast) und dort den Wert 1 annimmt, dann ist
> es wohl nicht unvernünftig anzunehmen, dass stets gilt:
>  
> [mm](\epsilon x)^2 \ge (\epsilon x)^2 \ e^{-\epsilon x^2}[/mm]
>  
> Wie sieht also die gesuchte Majorante aus? Das war jetzt
> eine Suggestivfrage... ;-)

womit nur noch das problem bliebe, dass [mm] $f(x)=(\epsilon x)^2$ [/mm] nicht in [mm] $L^1(\mathbb{R})$ [/mm] ist und somit als majorante ausfaellt...

gruss
matthias


Bezug
                                        
Bezug
Lebesgueintegrierbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:15 Mo 26.11.2007
Autor: generation...x

Wieso? Für festes [mm] \epsilon [/mm] natürlich schon.

Bezug
                                                
Bezug
Lebesgueintegrierbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:56 Di 27.11.2007
Autor: MatthiasKr

Hat [mm] $f(x)=x^2$ [/mm] ein endliches integral ueber [mm] $\mathbb{R}$? [/mm] Nicht dass ich wuesste.

Bezug
                        
Bezug
Lebesgueintegrierbarkeit: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:34 Di 27.11.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Lebesgueintegrierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 03:33 Mo 26.11.2007
Autor: MatthiasKr

Hallo,
> Die Funktion f: [mm]\IR[/mm] -> [mm]\IR[/mm] sei definiert durch
> [mm]f(x):=x^2e^{-x^2}[/mm] und die Funktion
> [mm]f_\epsilon(x):=\bruch{f(\epsilon x)}{\epsilon}.[/mm]
>  a) Zeigen
> Sie, dass [mm]f_\epsilon \in L^1 (\IR)[/mm] für alle [mm]\epsilon[/mm] > 0
> (z.B. mit Hilfe einer Majorante) und
> [mm]\integral_{-\infty}^{\infty}{f_\epsilon(x) dx}[/mm] =
> [mm]\integral_{-\infty}^{\infty}{f(x) dx}[/mm] für alle [mm]\epsilon[/mm] >
> 0
>  Bei der a) soll ich also zeigen, dass [mm]f_\epsilon[/mm]
> Lebesgueintegrierbar ist...
>  Hat jemand einen Tipp für mich, wie ich die Majorante
> dafür wählen könnte?
>   [mm]f_\epsilon (x)=\bruch{(\epsilon x)^2 e^{-(\epsilon x)^2}}{\epsilon}[/mm]

ich muss sagen, mir kommt die aufgabe sehr schleierhaft vor... bist du sicher, dass du [mm] $f_\epsilon$ [/mm] richtig definiert hast? Fuer mich wuerde

[mm] $f_\epsilon:=\epsilon f(\epsilon [/mm] x)$

mehr sinn machen. denn: wenn du statt x als argument [mm] $\epsilon [/mm] x$ hast, streckt sich die funktion in die breite fuer kleine werte von eps. durch den faktor 1/eps streckt sie sich auch noch in die hoehe, das integral vervielfacht sich also... mathematisch gefasst ist das

[mm] $\int_\mathbb{R} f_\epsilon(x) dx=\int_\mathbb{R} \frac1\epsilon f(\epsilon [/mm] x) dx$

substituiert man nun [mm] $y=\epsilon [/mm] x$, erhaelt man

[mm] $=\frac{1}{\epsilon^2}\int_\mathbb{R} [/mm] f(y) dy$

merkwuerdig also...

gruss
matthias

Bezug
        
Bezug
Lebesgueintegrierbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:11 Mo 26.11.2007
Autor: HerrRobert

Hinweis

Betrachten Sie, bitte, den Hinweis

[mm] exp(-x^2) [/mm] = [mm] exp(-x^2/2) [/mm] * [mm] exp(-x^2/2) [/mm]

[Verzeihung, mein Deutsch ist noch nicht perfekt.]



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]