www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-NumerikLegendre-Polynome
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Numerik" - Legendre-Polynome
Legendre-Polynome < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Legendre-Polynome: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 22:48 Di 14.03.2006
Autor: Tini21

Kann mir jemand erklären, wie man die Legendre-Polynome herleitet? Oder hat vielleicht jemand einen nützlichen Link für die Herleitung?

        
Bezug
Legendre-Polynome: Links
Status: (Antwort) fertig Status 
Datum: 23:33 Di 14.03.2006
Autor: Bastiane

Hallo!

Ich weiß nicht genau, was du mit "herleiten" meinst, aber vielleicht hilft dir ja dieser Link hier. Ansonsten gib doch einfach mal rechts oben in die Suche "Legendre" oder "Legendre Polynom" ein, da findest du auch einiges.

Viele Grüße
Bastiane
[cap]


Bezug
        
Bezug
Legendre-Polynome: Da war doch was...
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:20 Mi 15.03.2006
Autor: statler

Hallo Tini,

> Kann mir jemand erklären, wie man die Legendre-Polynome
> herleitet? Oder hat vielleicht jemand einen nützlichen Link
> für die Herleitung?

wenn ich mich dunkel an meine nebenbei gehörte Numerik-Vorlesung erinnere, bilden die Legendre-Polynome eine Orthonormalbasis bezgl. eines (aber welches?) Skalarproduktes im VR der Polynome, oder so. Vorschlag: Wir stecken beide unsere Nasen in ein geeignetes Buch, vllt steht das ja im Collatz, schaun mer mal.

Oder jemand anders kann das schlagartig aus dem Effeff!

Gruß aus HH-Harburg
Dieter



Bezug
                
Bezug
Legendre-Polynome: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 09:31 Mi 15.03.2006
Autor: Tini21

In meiner Mitschrift steht folgendes:
<p,q>=I[pq,w]= [mm] \integral_{a}^{b}{p(x) q(x)w(x)dx} [/mm]
Dies definiert ein Skalarprodukt auf dem Vektorraum  [mm] \pi_{m}. [/mm]
Nun folgt, dass für w=1 die Legendre-Polynome eine ONB von [mm] \pi_{m} [/mm] bilden.
Aus LA ist bekannt:  [mm] \pi_{m} \perp [/mm]    u  [mm] \in \pi_{m} \backslash [/mm] \ [mm] \pi_{m-1} [/mm]
Dabei ist u bis auf einen skalaren Faktor eindeutig bestimmt.
--> Für jede Gewichtsfunktion w existiert Knotenpolynom z=cu mit I[zp;w]=0 für alle p  [mm] \in \pi_{m-1} [/mm]
Leider gibt es keine explizite Darstellung der Nullstellen der Legendre-Polynome!



Hier verstehe ich überhaupt nichts!! Wie kommt man darauf?

Bezug
                        
Bezug
Legendre-Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 09:47 Mi 15.03.2006
Autor: mathemaduenn

Hallo Tini21,

> In meiner Mitschrift steht folgendes:
>  <p,q>=I[pq,w]= [mm]\integral_{a}^{b}{p(x) q(x)w(x)dx}[/mm]
>  Dies
> definiert ein Skalarprodukt auf dem Vektorraum  [mm]\pi_{m}.[/mm]
>  Nun folgt, dass für w=1 die Legendre-Polynome eine ONB von
> [mm]\pi_{m}[/mm] bilden.
>  Aus LA ist bekannt:  [mm]\pi_{m} \perp[/mm]    u  [mm]\in \pi_{m} \backslash[/mm]
> \ [mm]\pi_{m-1}[/mm]
>  Dabei ist u bis auf einen skalaren Faktor eindeutig
> bestimmt.
>  --> Für jede Gewichtsfunktion w existiert Knotenpolynom

> z=cu mit I[zp;w]=0 für alle p  [mm]\in \pi_{m-1}[/mm]
>  Leider gibt
> es keine explizite Darstellung der Nullstellen der
> Legendre-Polynome!
>  
>
>
> Hier verstehe ich überhaupt nichts!! Wie kommt man darauf?  

Was genau verstehst Du denn nicht.
Was ein Skalarprodukt ist?
Was ein Vektorraum ist?
Was eine ONB ist?
Was ein skalarer Faktor ist?
Was [mm] \perp [/mm] bedeutet ?

viele Grüße
mathemaduenn

Bezug
                                
Bezug
Legendre-Polynome: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 09:51 Mi 15.03.2006
Autor: Tini21

ich verstehe nicht, wieso für w=0 die Legendre Polynome eine ONB von  [mm] \pi_{m} [/mm] bilden. Und wie folgt daraus, dass
für jede Gewichtsfunktion w ein Knotenpolynom z existiert mit
z=cu mit I[zp;w]=0 für alle p  $ [mm] \in \pi_{m-1} [/mm] $

Bezug
                                        
Bezug
Legendre-Polynome: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:20 Mi 22.03.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]