Legendre-Symbol < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 13:19 Di 05.07.2011 | Autor: | Olek |
Hi!
Ich bin etwas irritiert - aber es ist bestimmt leicht mir zu helfen:
Die Ergänzungssätze zum quadr. Reziprozitätsgesetz geben an, wie man das Legendre-Symbol von [mm]\left ( \frac{2}{p} \right )[/mm] und [mm]\left ( \frac{-1}{p} \right )[/mm] bestimmt.
Nun möchte ich <span class="math">[mm]\left ( \frac{1}{p} \right )[/mm] berechnen. Ich sehe 2 Möglichkeiten:
1. Anwendung des Euler-Kriteriums. => [mm]1^\frac{p-1}{2}[/mm] = 1
2. Forme [mm]\left ( \frac{1}{p} \right )[/mm] um zu <span class="math">[mm]-1*\left ( \frac{-1}{p} \right )[/mm]. Wende nun das quadr. Rez.ges. an & erhalte:
<span class="math">[mm]-1*(-1)^\frac{p-1}{2}[/mm]. Das ist allerdings nich immer =1, sondern für <span class="math">[mm]p\equiv1 (mod 4)[/mm] =-1.
Wo ist der Fehler?
Vielen Dank für eure Hilfe!
Gruß,
Olek
</span></span></span></span>
|
|
|
|
Hallo Olek,
>
> Hi!
> Ich bin etwas irritiert - aber es ist bestimmt leicht mir
> zu helfen:
> Die Ergänzungssätze zum quadr. Reziprozitätsgesetz
> geben an, wie man das Legendre-Symbol von [mm]\left ( \frac{2}{p} \right )[/mm]
> und [mm]\left ( \frac{-1}{p} \right )[/mm] bestimmt.
> Nun möchte ich <SPAN class=math>[mm]\left ( \frac{1}{p} \right )[/mm]
> berechnen. Ich sehe 2 Möglichkeiten:
> 1. Anwendung des Euler-Kriteriums. => [mm]1^\frac{p-1}{2}[/mm] = 1
> 2. Forme [mm]\left ( \frac{1}{p} \right )[/mm] um zu <SPAN
[mm]-1*\left ( \frac{-1}{p} \right )[/mm].
Kann man das denn so umformen? Das ist doch keine normale (Bruch-)Rechnung in [mm] $\IR$ [/mm] ...
> Wende nun
> das quadr. Rez.ges. an & erhalte:
> <SPAN class=math>[mm]-1*(-1)^\frac{p-1}{2}[/mm]. Das ist
> allerdings nich immer =1, sondern für <SPAN
> class="math">[mm]p\equiv1 (mod 4)[/mm] =-1.
>
> Wo ist der Fehler?
> Vielen Dank für eure Hilfe!
> Gruß,
> Olek
</SPAN></SPAN></SPAN></SPAN>
Gruß
schachuzipus
|
|
|
|
|
> Die Ergänzungssätze zum quadr. Reziprozitätsgesetz
> geben an, wie man das Legendre-Symbol von [mm]\left ( \frac{2}{p} \right )[/mm]
> und [mm]\left ( \frac{-1}{p} \right )[/mm] bestimmt.
> Nun möchte ich [mm]\left ( \frac{1}{p} \right )[/mm]
> berechnen. Ich sehe 2 Möglichkeiten:
> 1. Anwendung des Euler-Kriteriums. => [mm]1^\frac{p-1}{2}[/mm] = 1
> 2. Forme [mm]\left ( \frac{1}{p} \right )[/mm] um zu [mm]-1*\left ( \frac{-1}{p} \right )[/mm].
diesen Fehler hat schachuzipus schon gemeldet
> Wende nun das quadr. Rez.ges. an & erhalte:
> [mm]-1*(-1)^\frac{p-1}{2}[/mm]. Das ist
> allerdings nich immer =1, sondern für[mm]p\equiv1 (mod 4)[/mm] =-1.
Hallo Olek,
zur Bestimmung von [mm] \left(\frac{1}{p}\right) [/mm] braucht man doch gar keine
Theorie, sondern nur die Definition, da $\ [mm] 1^2\equiv1\,(mod\ [/mm] p)$
für jedes p gilt.
Wegen [mm] $\left(\frac{-1}{p}\right)*\left(\frac{-1}{p}\right)\ [/mm] =\ [mm] \left(\frac{(-1)*(-1)}{p}\right)\ [/mm] =\ [mm] \left(\frac{1}{p}\right)$
[/mm]
kann man dann zunächst schließen, dass für [mm] \left(\frac{-1}{p}\right) [/mm] nur
die Werte +1 und -1 in Frage kommen. Das Eulersche Kriterium
liefert (für [mm] p\not=2) [/mm] den richtigen Wert, nämlich +1 , falls p mod 4 = 1
und -1, falls p mod 4 = 3.
Für p=2 hat man [mm] $\left(\frac{-1}{p}\right)\ [/mm] =\ [mm] \left(\frac{-1}{2}\right)\ =\left(\frac{1}{2}\right)\ [/mm] =\ 1$
LG Al-Chw.
|
|
|
|