www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionLeibniz-Formel,n-te Ableitung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Induktion" - Leibniz-Formel,n-te Ableitung
Leibniz-Formel,n-te Ableitung < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Leibniz-Formel,n-te Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:13 Do 24.01.2008
Autor: Feroxa

Aufgabe
Leibnitz-Formel
Es seien f,g: [mm] \IR [/mm] --> [mm] \IR [/mm] n-mal differenzierbare Funktionen. Beweisen Sie induktiv die Leibnizsche Formel für die n-te Ableitung des Produkts f*g:

(f*g)^(n) = [mm] \summe_{k=0}^{n} \vektor{n \\ k} f^{(k)}g^{(n-k)}. [/mm]

Hinweis: [mm] \vektor{n \\ k} [/mm] + [mm] \vektor{n \\ k+1} [/mm] = [mm] \vektor{n+1 \\ k+1} [/mm]

Also mal wieder eine Aufgabe die ich nicht kapiere. Mir fehlt hier mal wieder der Ansatz, ich weiß nicht wie ich an die Aufgabe herangehen soll. Muss ich [mm] (f*g)^n [/mm] irgendwie so umstellen dass die Summe links rauskommt? und wenn ja wie mach ich das?

Danke schonmal für die viele Hilfe, die ich immer bekomme.
Gruß Feroxa

        
Bezug
Leibniz-Formel,n-te Ableitung: vollständige Induktion
Status: (Antwort) fertig Status 
Datum: 17:17 Do 24.01.2008
Autor: Roadrunner

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo Feroxa!


Du sollst diese Aufgabe mittels vollständiger Induktion lösen (siehe auch Hinweis "induktiv").

Dafür musst Du zunächst die Formel für $n \ = \ 1$ zeigen (Induktionsanfang) und anschließend mal den Term $(f*g)^{(n)]$ ableiten (Tipp: MBProduktregel), um auf $(f*g)^{(n+1)}$ zu kommen.


Gruß vom
Roadrunner


Bezug
                
Bezug
Leibniz-Formel,n-te Ableitung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 11:40 Sa 26.01.2008
Autor: Feroxa

Ok also wenn ich für den Induktionsanfang n=1 setze dann steht da

[mm] (f*g)^1 [/mm] = [mm] \summe_{k=0}^{1} \vektor{1 \\ k} f^k \* [/mm] g^(1-k)

muss ich noch k= 0 setzen? weil da ist ja noch nichts gezeigt. Ich hab Probleme mit dem Summenzeichen, das verwirrt mich immer.

Dann die Ableitung:

n [mm] \* (f\*g)^{n-1} \* (f'\*g) [/mm] + [mm] (f\*g') [/mm]
also äußere [mm] \* [/mm] innere Ableitung. Aber wie komm ich dann auf n+1 kann ich das noch irgendwie zusammenfassen?
oder ist die richtig: n(f*g' + f'*g)^(n-1)
aber das wäre ja dann nicht innere [mm] \* [/mm] äußere Ableitung.

Danke für die Hilfe. Gruß Feroxa

Bezug
                        
Bezug
Leibniz-Formel,n-te Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:19 Sa 26.01.2008
Autor: angela.h.b.


> Ok also wenn ich für den Induktionsanfang n=1 setze dann
> steht da
>
> [mm](f*g)^1[/mm] = [mm]\summe_{k=0}^{1} \vektor{1 \\ k} f^k \*[/mm] g^(1-k)
>  
> muss ich noch k= 0 setzen? weil da ist ja noch nichts
> gezeigt. Ich hab Probleme mit dem Summenzeichen, das
> verwirrt mich immer.

Hallo,

nun mußt Du prügen, ob es stimmt, was da steht. Dazu schreiben wir die Summe mal aus (- wenn Dich das Summenzeichen jetzt, am Ende des Semsters immer noch verwirrt, solltest Du unbedingt dieses Theama nacharbeiten.):

> [mm](f*g)^1[/mm] = [mm]\summe_{k=0}^{1} \vektor{1 \\ k} f^k \*[/mm] g^(1-k)

[mm] =\vektor{1 \\ 0} f^{(0)} \*g^{(1-0)} [/mm] + [mm] \vektor{1 \\ 1} f^{(1)} \*g^{(1-1)} [/mm]

= [mm] f^{(0)} \*g^{(1)} [/mm] + [mm] f^{(1)} \*g^{(0)}. [/mm]

Also richtig. (Warum? Was steht da?)

Wenn ich mir das, was Du weiter schreibst anschaue, bin ich mir nicht ganz sicher, ob Du die Induktion richtig verstanden hast. (Falls ich hier richtig liege: unbedingt nacharbeiten.)

Unter der Voraussetzung, daß

> (f*g)^(n) = $ [mm] \summe_{k=0}^{n} \vektor{n \\ k} f^{(k)}g^{(n-k)}. [/mm] $  richtig ist für alle n muß nun gezeigt werden:


Induktionsschluß: Es ist [mm] (f*g)^{(n+1)} [/mm] = $ [mm] \summe_{k=0}^{n+1} \vektor{n+1 \\ k} f^{(k)}g^{(n+1-k)}. [/mm] $.


Du startest nun mit [mm] (f*g)^{(n+1)} [/mm] und formst dies unter Verwendung der Voraussetzung so um, daß am Ende das gewünschte Ergebnis dasteht.

Für den Start fielen mit zwei Möglichkeiten ein:

A. [mm] (f*g)^{(n+1)}= ((f*g)^{(n)})'= [/mm]   jetzt für [mm] (f*g)^{(n)} [/mm] die Ind. vor. verwenden

B. [mm] (f*g)^{(n+1)}= ((f*g)')^{(n)}= (f'g+fg')^{(n)}= (f'g)^{(n)}+(fg')^{(n)} [/mm] und nun die Ind. vor. für (f'g) und (fg').      (Hier verwendet man, daß [mm] (F+G)^{(n)} [/mm] = [mm] (F)^{(n)}+(G)^{(n)} [/mm] )


Ich habe nicht durchgerechnet, welcher Weg bequemer und funktionstüchtiger  ist. (Ich denke, der zweite.)
Ums Spielen mit den Summen wirst Du jedenfalls nicht heraumkommen.

Ich finde es bei solchen Aufgeban immer hilfreich, die Sache zunächst mal konkret durchzuführen, z.B. für [mm] (f*g)^{(4+1)}. [/mm]


>  
> Dann die Ableitung:
>  
> n [mm]\* (f\*g)^{n-1} \* (f'\*g)[/mm] + [mm](f\*g')[/mm]
>  also äußere [mm]\*[/mm] innere Ableitung.

Ist Dir eigentlich klar, daß [mm] f^{(n)} [/mm] die n-te Ableitung bezeichnet und nicht etwas die Funktion f n-mal mit sich selbst multipliziert?

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]