www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenLeibniz-Kriterium
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Leibniz-Kriterium
Leibniz-Kriterium < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Leibniz-Kriterium: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:57 Do 29.04.2010
Autor: mich1985

Aufgabe
Zu prüfen ist die Konvergenz mit Hilfe des Leibniz-Kriteriums
[mm] \summe_{k=1}^{\infty} \bruch{(-1)^{k+1}k}{k^2+1} [/mm]

Hallo zusammen,
ich bin mir leider bei der Beantwortung etwas unsicher ob das so korrekt ist. Zur Erfüllung muss ja folgendes erfüllt sein:

monoton fallende Nullfolge (dem Betrag nach):
Hierzu habe ich einfach ein paar Werte eingesetzt (hieraus ist ja ersichtlich das sie monoton fallen).
[mm] \summe_{k=1}^{\infty} \bruch{(-1)^{k+1}k}{k^2+1} [/mm] = [mm] \bruch{1}{3}-\bruch{1}{5}+\bruch{1}{7}-+... [/mm]

Grenzwert:
[mm] |\bruch{(-1)^{k+1}k}{k^2+1}|=\bruch{k}{k^2+1} [/mm]
für k -> unendlich strebt der Ausdruck gegen Null.

Somit sind doch alle Bedigungen erfüllt oder habe ich etwas falsch gemacht?

Gruß

        
Bezug
Leibniz-Kriterium: Antwort
Status: (Antwort) fertig Status 
Datum: 21:06 Do 29.04.2010
Autor: MontBlanc

Hallo,

falsch ist das nicht, was du machst, aber es könnte doch etwas stringenter sein!

$ [mm] \summe_{k=1}^{\infty} \bruch{(-1)^{k+1}k}{k^2+1} [/mm] $

So zu zeigen wäre jetzt also, dass

[mm] \left|\bruch{(-1)^{k+1}k}{k^2+1}\right|=\left|\bruch{1}{k^2+1}\right| [/mm] monoton fallend ist, nun es gilt

[mm] (k+1)^2+1>k^2+1 \Rightarrow \bruch{1}{(k+1)^2+1}<\bruch{1}{k^2+1}, [/mm] da k>0 ist, haben wir [mm] \bruch{k}{(k+1)^2+1}<\bruch{k}{k^2+1} \Rightarrow a_{k+1}
Nun ist noch zu zeigen, dass [mm] \bruch{k}{k^2+1}\to [/mm] 0 wenn [mm] k\to\infty. [/mm] Das geht ja denn fix, denn [mm] \bruch{k}{k^2+1}<\bruch{k}{2k^2} \forall [/mm] k>1 usw usf.

Lg


Bezug
                
Bezug
Leibniz-Kriterium: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:36 Do 29.04.2010
Autor: mich1985

Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]