www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraLemma von Schur
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Algebra" - Lemma von Schur
Lemma von Schur < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lemma von Schur: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:43 Mi 19.04.2006
Autor: Kasperl

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich habe eine Verständnisfrage zu einem Beweis des Lemma von Schur:

Es geht darum:
Sei A endlichdimensionale K-Algebra ( K algebraisch abgeschlossener Körper)
und M ein einfacher A-Modul.

Sei [mm] \phi \in [/mm] End(M)

Warum ist [mm] \phi [/mm] K-linear ? (Ich glaub das ist eigentlich offensichtlich, steh aber auf der Leitung)

Und warum ist die existenz eines Eigenwertes  [mm] \lambda [/mm] dann klar?


Und ist der Kern von ( [mm] \phi [/mm] -  [mm] \lambda [/mm] * id(M)) dann der Eigenraum von  [mm] \lambda [/mm] ?

Danke für die Mühe!

        
Bezug
Lemma von Schur: Einbettung von K in A
Status: (Antwort) fertig Status 
Datum: 20:54 Mi 19.04.2006
Autor: Gnometech

Grüße!

> Es geht darum:
>  Sei A endlichdimensionale K-Algebra ( K algebraisch
> abgeschlossener Körper)
>  und M ein einfacher A-Modul.
>  
> Sei [mm]\phi \in[/mm] End(M)
>  
> Warum ist [mm]\phi[/mm] K-linear ? (Ich glaub das ist eigentlich
> offensichtlich, steh aber auf der Leitung)

Naja, wenn [mm] $\phi$ [/mm] ein Endomorphismus von $M$ als $A$-Modul ist, dann bedeutet das doch, dass [mm] $\phi(am) [/mm] = a [mm] \phi(m)$ [/mm] für alle $m [mm] \in [/mm] M$ und $a [mm] \in [/mm] A$ gilt bezüglich der $A$-Modul Struktur von $M$.

$A$ ist aber eine $K$-Algebra, also ein Vektorraum über $K$ mit Multiplikation, insbesondere mit einem Einselement. Also kann ich Elemente [mm] $\lambda \in [/mm] K$ auffassen als Elemente von $A$, vermöge [mm] $\lambda \cdot 1_A \in [/mm] A$. Und da [mm] $\phi$ [/mm] linear bezüglich aller Elemente von $A$ ist demnach aus bezüglich diesen. Und die Additivität ist ohnehin klar.

> Und warum ist die existenz eines Eigenwertes  [mm]\lambda[/mm] dann

> klar?

Jordan-Theorie. Man fasst $M$ (wie oben erläutert) als Vektorraum über $K$ auf. Da $K$ algebraisch abgeschlossen ist, hat das charakteristische
Polynom der darstellenden Matrix von [mm] $\phi$ [/mm] mindestens eine Nullstelle, also hat [mm] $\phi$ [/mm] mindestens einen Eigenwert. Hier geht ein, dass $M$ endlichdimensional über $K$ ist.
  

>
> Und ist der Kern von ( [mm]\phi[/mm] -  [mm]\lambda[/mm] * id(M)) dann der
> Eigenraum von  [mm]\lambda[/mm] ?

Naja, das ist bei Vektorräumen schon so, also auch bei diesem als VR aufgefassten Modul. :)

Alles klar?

Lars

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]