www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesLemma von Schur
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra Sonstiges" - Lemma von Schur
Lemma von Schur < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lemma von Schur: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:35 So 19.08.2012
Autor: EvelynSnowley2311

huhu zusammen,

ich beziehe mich hier auf den Artikel
http://de.wikipedia.org/wiki/Schurzerlegung

dort steht

"A seine eine quadr. Matrix mit Einträgen über K, wobei K entweder für [mm] \IR [/mm] oder [mm] \IC [/mm] steht. Zerfällt das  char. Polynom über A in Linearfaktoren, so existiert eine unitäre Matrix, sodass R = [mm] U^T [/mm] A U eine ober Dreiecksmatrix ist


meine Frage: Da ich gelernt habe, dass das char. Polynom über [mm] \IC [/mm] IMMER in Linearfaktoren zerfällt, ist dieser Satz für komplexe Matrizen immer gültig?


Lg,

Eve

        
Bezug
Lemma von Schur: Antwort
Status: (Antwort) fertig Status 
Datum: 11:39 So 19.08.2012
Autor: fred97


> huhu zusammen,
>  
> ich beziehe mich hier auf den Artikel
> http://de.wikipedia.org/wiki/Schurzerlegung
>  
> dort steht
>  
> "A seine eine quadr. Matrix mit Einträgen über K, wobei K
> entweder für [mm]\IR[/mm] oder [mm]\IC[/mm] steht. Zerfällt das  char.
> Polynom über A in Linearfaktoren, so existiert eine
> unitäre Matrix, sodass R = [mm]U^T[/mm] A U eine ober
> Dreiecksmatrix ist
>  
>
> meine Frage: Da ich gelernt habe, dass das char. Polynom
> über [mm]\IC[/mm] IMMER in Linearfaktoren zerfällt, ist dieser
> Satz für komplexe Matrizen immer gültig?

Ja


https://lp.uni-goettingen.de/get/text/1038

FRED

>  
>
> Lg,
>  
> Eve


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]