Levy-Proz. Timenormalization < stoch. Prozesse < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 13:46 So 19.09.2010 | Autor: | moxela |
Hallo,
ich arbeite gerade ein Paper durch und habe folgendes Problem:
Es geht um Levy-Prozesse, genauer um Subordinatoren, bei mir mit L(t) abgekürzt.
Def: L erfüllt die Timenormalization (TN) für eine Verteilung F, wenn (Erwartungswert ->) E[F(L(t))] = F(t) für alle t.
Jetzt haben sie da noch ein Beispiel:
L(t) = m*t + [mm] \sum_{i=1}^{N(t)}{J(i)}, [/mm] mit N(t) ein Poisson-Prozess mit Intensität 2,14 und J(i) exponentialverteilte Zufallsvariable mit Erwartungswert 0,13. So und nun sagen sie, damit L die (TN) für Exp(1) (unit exponentail law) erfüllt, muss m=0,748 sein.
Meine Rechnung:
[mm] F(t)=1 - e^t [/mm] <- soll gleich sein mit -> [mm] E[F(L(t))] = E[ 1 - e^{L(t)} ] = 1 - e^{ m*t + E[\sum_{i=1}^{N(t)}{J(i)}]} = 1 - e^{(m*t + 0,2782*t)} [/mm], also müsste m=0,7218 sein.
Habe ich jetzt irgendwo einen Denkfehler/Rechenfehler und die Ergebnisse sind nur durch Zufall relativ nah bei einander oder ist es ein Tippfehler/Rechenfehler von denen?
Danke
Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: http://de.pokerstrategy.com/forum/thread.php?threadid=924047
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:37 So 19.09.2010 | Autor: | moxela |
Ich glaub, ich habe den Fehler, E[f(X)] ist nicht gleich f[E(X)], Stochastik 1 ist wohl doch schon etwas länger her, dann haut die ganze Rechnung natürlich nicht hin. Dann probier ich es morgen nochmal
|
|
|
|