www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-SonstigesLim
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Analysis-Sonstiges" - Lim
Lim < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lim: gegen unendlich
Status: (Frage) beantwortet Status 
Datum: 12:25 Sa 07.04.2007
Autor: DoktorQuagga

Aufgabe
Noch so ein seltsamer Fall...was kommt raus, wenn ich in der folgenden Funktion x gegen unendlich laufen lasse?

[mm] \limes_{x\rightarrow\infty} [/mm]  (f(x) =  [mm] x^{- 10.000} [/mm]  *  [mm] e^{x} [/mm]  )


        
Bezug
Lim: Tipp
Status: (Antwort) fertig Status 
Datum: 12:53 Sa 07.04.2007
Autor: UE_86

Man kann solche Aufgaben auch ohne groß zu rechnen angehen, so können wir es bei uns machen.
Also nochmal die Funktion
[mm] f(x)=\limes_{n\rightarrow\infty} x^{-10.000} [/mm] * [mm] e^{x} [/mm]
In dieser Funktion wird [mm] x^{-10.000} [/mm] sehr klein -> geht gegen 0 bzw. ist immer null
und [mm] e^{x} [/mm] wird sehr groß -> geht gegen [mm] \infty [/mm]

EDIT, da nicht richtig (siehe unten)

MFG UE

Bezug
                
Bezug
Lim: Korrekturmitteilung
Status: (Korrektur) fundamentaler Fehler Status 
Datum: 12:58 Sa 07.04.2007
Autor: Stefan-auchLotti


> Man kann solche Aufgaben auch ohne groß zu rechnen angehen,
> so können wir es bei uns machen.
>  Also nochmal die Funktion
>  [mm]f(x)=\limes_{n\rightarrow\infty} x^{-10.000}[/mm] * [mm]e^{x}[/mm]
>  In dieser Funktion wird [mm]x^{-10.000}[/mm] sehr klein -> geht

> gegen 0 bzw. ist immer null
>  und [mm]e^{x}[/mm] wird sehr groß -> geht gegen [mm]\infty[/mm]

>  

[ok]

> Da ja das Produkt einer Multiplikation mit 0 immer 0 ist,
> kann man hier sagen, dass die Funktion gegen 0
> konvergiert.
>  

[notok]

Beim Rechnen mit unendlich gelten etwas andere Regeln.

Die Unendlichkeit überwiegt allem, so dass [mm] $\lim_{x\to\infty}f(x)=\infty$ [/mm] gilt.

> MFG UE

Grüße, Stefan.

Bezug
                        
Bezug
Lim: Korrekturmitteilung
Status: (Korrektur) oberflächlich richtig Status 
Datum: 13:33 Sa 07.04.2007
Autor: UE_86


> [notok]
>  
> Beim Rechnen mit unendlich gelten etwas andere Regeln.
>  
> Die Unendlichkeit überwiegt allem, so dass
> [mm]\lim_{x\to\infty}f(x)=\infty[/mm] gilt.
>  
> > MFG UE
>
> Grüße, Stefan.

Stimmt, jetzt wo du es sagst, seh ich meinen Fehler.
Aber ist denn das Ergebnis wirklich [mm] \infty? [/mm]
Ist 0 * [mm] \infty [/mm] überhaupt definiert?...Ich bin mir jetzt gar nicht so sicher...sonst hätte das ganze nämlich keine Lösung.
MFG UE

Bezug
        
Bezug
Lim: Antwort
Status: (Antwort) fertig Status 
Datum: 14:01 Sa 07.04.2007
Autor: schachuzipus

Hallo zusammen,

hier kann man zur Bestimmung des GW Herrn L'Hospital zu Rate ziehen.

Schreibe die Funktion [mm] f(x)=x^{-10000}\cdot{}e^x [/mm] um in [mm] \frac{g(x)}{h(x)}=\frac{e^x}{x^{10000}} [/mm]

Hier gehen Zähler und Nenner beide gegen [mm] \infty [/mm] für [mm] x\rightarrow \infty [/mm]

Leite Zähler und Nenner einmal ab [mm] \Rightarrow \frac{g'(x)}{h'(x)}=\frac{e^x}{10000\cdot{}x^{9999}} [/mm]

Hier gehen Zähler und Nenner immer noch beide gegen [mm] \infty [/mm] für [mm] x\rightarrow \infty [/mm]

Diese Prozedur kannst du noch 9999 mal wiederholen, dann erhältst du:

[mm] \frac{g^{(10000)}(x)}{h^{(10000)}(x)}=\frac{e^x}{10000!} [/mm]

und dieser Bruch geht gegen [mm] \infty [/mm] für [mm] x\rightarrow\infty [/mm] , da 10000! eine feste Zahl ist.

Damit geht auch [mm] \frac{g(x)}{h(x)}=\frac{e^x}{x^{10000}} [/mm] gegen [mm] \infty [/mm] für [mm] x\rightarrow\infty [/mm]


Gruß


schachuzipus

Bezug
                
Bezug
Lim: THX
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:28 Do 03.05.2007
Autor: DoktorQuagga

Danke...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]