www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesLimes, Log,Exp
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Sonstiges" - Limes, Log,Exp
Limes, Log,Exp < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Limes, Log,Exp: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:20 So 02.09.2012
Autor: quasimo

Aufgabe
In meinen SKriptum steht:
log exp [mm] \limes_{n\rightarrow\infty} [/mm] log [mm] (1+1/n)^n [/mm] = log [mm] (\limes_{n\rightarrow\infty}(1+1/n)^n) [/mm]

Hallo,
Ich verstehe nicht wieso die beiden Therme gleich sind bzw. wieso man vertauschen darf.

Für das geamte Bsp im SKriptum siehe: http://homepage.univie.ac.at/christian.schmeiser/einfanalysis.pdf
Seite 101 ganz oben

Würde mich freuen, wenn mich da wer aufklärt.
LG,
quasimo



        
Bezug
Limes, Log,Exp: Antwort
Status: (Antwort) fertig Status 
Datum: 12:13 So 02.09.2012
Autor: Marcel

Hallo,

> In meinen SKriptum steht:
>  log exp [mm]\limes_{n\rightarrow\infty}[/mm] log [mm](1+1/n)^n[/mm] = log
> [mm](\limes_{n\rightarrow\infty}(1+1/n)^n)[/mm]
>  Hallo,
>  Ich verstehe nicht wieso die beiden Therme gleich sind
> bzw. wieso man vertauschen darf.

naja, da wurde folgendes gemacht (ich schreibe kurz [mm] $\lim_n:=\lim_{n \to \infty}$) [/mm]
Aus [mm] $1=\lim_n \log(1+1/n)^n$ [/mm] folgt [mm] $e=\exp(1)=\exp(\lim_n \log (1+1/n)^n)\,.$ [/mm]
Weil die Exponentialfunktion (insbesondere an der Stelle [mm] $1\,$) [/mm] stetig ist,
folgt
[mm] $$e=\lim_n(\exp(\log(1+1/n)^n))\,.$$ [/mm]
(Es gibt einen Satz, der "grob gesagt" besagt:
Ist [mm] $f\,$ [/mm] (eine Funktion zw. metrischen Räumen) stetig an [mm] $x_0\,,$ [/mm] so gilt,
dass für jede Folge [mm] $(x_n)_n$ [/mm] mit [mm] $x_n \to x_0$ [/mm] auch [mm] $\lim_n f(x_n)=f(x_0)\;\;(=f(\lim_n x_n))$ [/mm] folgt. Die Umkehrung des
Satzes gilt auch. In irgendeiner Art sollte der in Eurem Skript auftauchen,
und wenn er nur für Funktionen $I [mm] \to \IR$ [/mm] mit Intervallen
$I [mm] \subseteq \IR$ [/mm] formuliert ist. Ich habe das Skript jetzt aber nicht danach
durchsucht!)

Wegen [mm] $\exp\circ \log=\text{id}_{(0,\infty)}$ [/mm] ist [mm] $(\exp \circ \log)(1+1/n)^n=(1+1/n)^n\,.$ [/mm] (Für jedes $n [mm] \in \IN\,.$) [/mm]

Also
[mm] $$e=\lim_n(1+1/n)^n\,.$$ [/mm]
W.z.b.w. (Was zu beweisen war.)

P.S.
Strenggenommen steht in Deinem Skript, dass (bzw. warum das folgende) gilt
[mm] $$1=\lim \log(1+1/n)^n\,,$$ [/mm]
dann wird [mm] $\log \circ \exp=\text{id}_\IR$ [/mm] ausgenutzt:
[mm] $$1=\log (\exp(\lim_n\log(1+1/n)^n))\,.$$ [/mm]
Weil bereits die Existenz von [mm] $\lim_n\log(1+1/n)^n$ [/mm] erkannt wurde
(dieser Grenzwert ist ja [mm] $1\,,$ [/mm] wie man in der Zeile am Anfang sieht),
darfst Du nun
[mm] $$\red{(\*)}\;\;\;\exp(\lim_n\log(1+1/n)^n)=\lim_n \exp(\log(1+1/n)^n)$$ [/mm]
benutzen
[mm] $$1=\log (\exp(\lim_n\log(1+1/n)^n))\stackrel{\red{(\*)}}{=}\log (\lim_n \exp(\log(1+1/n)^n))=\log(\lim_n ((\exp \circ \log)(1+1/n)^n))\,.$$ [/mm]
Wegen [mm] $\exp \circ \log=\text{id}_{(0,\infty)}$ [/mm] folgt dann
[mm] $$1=\log (\lim_n(1+1/n)^n)\,.$$ [/mm]

Der Rest ist klar [mm] ($\exp\,$ [/mm] anwenden).

Geschickterweise (wobei das, zugegebenermaßen auch verwirren kann)
wurden diese Überlegungen halt in eine Zeile verpackt. Wie gesagt, ich
gebe zu, dass der Autor des Skriptes didaktisch vielleicht das ganze
besser in die obigen Überlegungen "aufgesplittet" hätte. Denn in der
Gleichungskette verwendet er ja Ergebnisse, die man am Anfang der
Gleichungskette sich überlegt hat. Das ist vermutlich auch der Punkt, der
Dich verwirrt hat.

P.P.S.
Sinnvoller ist es, wenn Du die Seite des Skriptes bzgl. der "internen
Seitenzählung" angibst. Also etwa "Siehe Skript Seite 94, interne Seitenzählung."
Denn ja nachdem, welchen Reader man benutzt, muss man sonst erstmal
rausfinden, wie die Differenz zwischen interner Seitenzählung und
Seitenangabe des Readers ist - bei mir ist z.B. keine Seitenangabe bzgl.
des Readers sichtbar.

Gruß,
  Marcel

Bezug
                
Bezug
Limes, Log,Exp: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:09 So 02.09.2012
Autor: quasimo

Hei,
vielen dank.

Ich dachte das öffnet bei jedem im Pdf mit der Seitenzählung.
Werd ich nächste mal berücksichtigen.

Lg,
quasimo

Bezug
                        
Bezug
Limes, Log,Exp: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:06 So 02.09.2012
Autor: Marcel

Hi quasimo,

> Hei,
>  vielen dank.

gerne! :-)
  

> Ich dachte das öffnet bei jedem im Pdf mit der
> Seitenzählung.
>  Werd ich nächste mal berücksichtigen.

Ist kein Problem - ich hab' da irgendso'n pdf-reader, der Firefoxintern
arbeitet. Kann auch sein, dass ich die Seitenzählung einfach übersehen
habe. Aber mit der internen bist Du eigentlich immer auf der sicheren Seite!

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]