www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesLimes Superior
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Sonstiges" - Limes Superior
Limes Superior < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Limes Superior: Frage/Erklärung
Status: (Frage) beantwortet Status 
Datum: 14:52 Sa 19.11.2011
Autor: nobodon

Hallo Leute,
ich hab mal wieder eine kurze Frage:

ich verstehe folgende Limes Superior Definitionen nicht:
[mm] 1$\inf_{j \in \mathbb{R}} \sup_{n \geq j} x_n [/mm] $

ist dasselbe wie

[mm] 2$\limsup_{n \to\infty} x_n$ [/mm]

(Es existiert ein Häufungspunkt in R)

2. verstehe ich so, die Menge aller Häufungspunkte c mit $ c [mm] \geq x_n$ [/mm] lasse ich gegen unendlich laufen`?
1. ab einem bestimmten j sind alle anderen Folgeglieder kleiner, s.d. man sagen kann das j-te Folgeglied ist größer als alles andere nach ihm, aber das steht doch im Widerspruch zur 1 ?Was ist das Inf und Sup in der Bezeichnung ? Supremum und Infinum? wenn ja, dann bilde ich erst das Supremum der Folge und davon das Infinum? WO macht das Sinn?

danke für Hilfe
mfg

        
Bezug
Limes Superior: Infimum der Suprema
Status: (Antwort) fertig Status 
Datum: 18:02 Sa 19.11.2011
Autor: Helbig

Mit (1) meint man das Infimum der Suprema der Endstücke der Folgenglieder:
Nehmen wir als Beispiel die Folge [mm] $x_n [/mm] = [mm] \bruch [/mm] 1 n$.
Das $j-te$ Endstück der Folge ist

[mm] $\{x_n\mid j\le n\}$. [/mm]

Das Supremum dieses Endstücks ist:

[mm] $s_j=\sup \{x_n\mid j\le n\}=\sup\{1/n\mid j\le n\}=1/j$ [/mm]

Und das Infimum aller Suprema ist:

[mm] \inf_{j\in\IN} \sup_{j\le n} x_n [/mm] = [mm] \inf_{j\in\IN} s_j [/mm] = [mm] \inf_{j\in\IN} [/mm] 1/j = 0.

Mit (2) meint man den größten Häufungspunkt der Folge, in unserem Beispiel wäre das auch $0$, da die Folge nur den einzigen Häufungspunkt $0$ hat. Dies ist nun kein Zufall, denn man kann tatsächlich

[mm] $\inf_{j\in\IN} \sup_{j\le n} x_n [/mm] = [mm] \limsup_{n\to \infty} x_n$ [/mm]

für jede beschränkte Folge [mm] $(x_n)$ [/mm] zeigen.

Hilft das?

Grüße Wolfgang

Bezug
                
Bezug
Limes Superior: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:17 Sa 19.11.2011
Autor: nobodon

hmm es hilft etwas, aber es würde komplett helfen wenn du mir dieses Beispiel erläuterst:

ich definiere eine Folge
[mm] $a_n [/mm] = 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4 $ usw
Also gibt es 4 Häufungspunkte denn es gibt 4 Teilfolgen die gegen diese Werte konvergieren:
[mm] $a_{4n+4} [/mm] = 4,4,4,4,..$
[mm] $a_{4n+3} [/mm] = 3,3,3,3..$
[mm] $a_{4n+2} [/mm] = 2,2,2,,2....$
[mm] $a_{4n+1} [/mm] =1,1,1,...$

Dann ist laut 1)
$ [mm] s_j=\sup \{x_n\mid j\le n\}=\sup\{1/n\mid j\le n\}=a_j [/mm] $
das Supremum der Folge [mm] $a_n$ [/mm] ist 4 und dann ist das
Inf sup [mm] (a_n) [/mm] = inf 4 = 4 ??
oder?> Mit (1) meint man das Infimum der Suprema der Endstücke

> der Folgenglieder:
>  Nehmen wir als Beispiel die Folge [mm]x_n = \bruch 1 n[/mm].
>  Das
> [mm]j-te[/mm] Endstück der Folge ist
>  
> [mm]\{x_n\mid j\le n\}[/mm].
>  
> Das Supremum dieses Endstücks ist:
>  
> [mm]s_j=\sup \{x_n\mid j\le n\}=\sup\{1/n\mid j\le n\}=1/j[/mm]
>  
> Und das Infimum aller Suprema ist:
>  
> [mm]\inf_{j\in\IN} \sup_{j\le n} x_n[/mm] = [mm]\inf_{j\in\IN} s_j[/mm] =
> [mm]\inf_{j\in\IN}[/mm] 1/j = 0.
>  
> Mit (2) meint man den größten Häufungspunkt der Folge,
> in unserem Beispiel wäre das auch [mm]0[/mm], da die Folge nur den
> einzigen Häufungspunkt [mm]0[/mm] hat. Dies ist nun kein Zufall,
> denn man kann tatsächlich
>
> [mm]\inf_{j\in\IN} \sup_{j\le n} x_n = \limsup_{n\to \infty} x_n[/mm]
>  
> für jede beschränkte Folge [mm](x_n)[/mm] zeigen.
>  
> Hilft das?
>  
> Grüße Wolfgang


Bezug
                        
Bezug
Limes Superior: Antwort
Status: (Antwort) fertig Status 
Datum: 18:51 Sa 19.11.2011
Autor: Helbig


> hmm es hilft etwas, aber es würde komplett helfen wenn du
> mir dieses Beispiel erläuterst:
>  
> ich definiere eine Folge
>  [mm]a_n = 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4[/mm] usw
>  Also gibt es 4 Häufungspunkte denn es gibt 4 Teilfolgen
> die gegen diese Werte konvergieren:
>  [mm]a_{4n+4} = 4,4,4,4,..[/mm]
>  [mm]a_{4n+3} = 3,3,3,3..[/mm]
>  [mm]a_{4n+2} = 2,2,2,,2....[/mm]
>  
> [mm]a_{4n+1} =1,1,1,...[/mm]
>  
> Dann ist laut 1)
>  [mm]s_j=\sup \{x_n\mid j\le n\}=\sup\{1/n\mid j\le n\}=a_j[/mm]
>  
> das Supremum der Folge [mm]a_n[/mm] ist 4 und dann ist das
>  Inf sup [mm](a_n)[/mm] = inf 4 = 4 ??

Genau! Jedes der [mm] $s_j$ [/mm] ist 4, Du hast also eine konstante Folge, die Menge ihrer
Folgenglieder ist [mm] $\{4\}$ [/mm] und das Infimum dieser Menge ist 4.

OK?
Wolfgang

Bezug
                                
Bezug
Limes Superior: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:21 Sa 19.11.2011
Autor: nobodon

Ok last question xD!
Ist beim "Inf sup [mm] a_n" [/mm] das "Inf" eigentlich nutzlos? ich meine nachdem ich von einer Folge das Supremum bestimmt habe bleibt ein Wert übrig, d.h. ein konstanter Wert. Und Wenn ich davon, vom konstanten Wert, das Inf. bilde bleibt es unverändert, also ist das Inf nutzlos??

Bezug
                                        
Bezug
Limes Superior: Antwort
Status: (Antwort) fertig Status 
Datum: 20:58 Sa 19.11.2011
Autor: Helbig


> Ok last question xD!
>  Ist beim "Inf sup [mm]a_n"[/mm] das "Inf" eigentlich nutzlos? ich
> meine nachdem ich von einer Folge das Supremum bestimmt
> habe bleibt ein Wert übrig, d.h. ein konstanter Wert. Und
> Wenn ich davon, vom konstanten Wert, das Inf. bilde bleibt
> es unverändert, also ist das Inf nutzlos??

Nein. Nimm das Beispiel [mm] $x_n=1/n$. [/mm] Das Supremum aller Folgenglieder ist 1, weil dies die kleinste obere Schranke von [mm] $\{1/n\mid n\in\IN\}$ [/mm] ist, aber [mm] $\inf\sup x_n=0$. [/mm]

Grüße,
Wolfgang


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]