www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisLimes superior
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - Limes superior
Limes superior < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Limes superior: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:21 Fr 09.12.2005
Autor: Kati

Ich habe diese Frage noch in keinem anderen Internetforum gestellt.

HI!

Ich habe ein Problem mit einem Beweis:

Für beschränkte Folgen [mm] (a_{n})_{0}^{\infty} [/mm] , [mm] (b_{n})_{0}^{\infty} [/mm] in [mm] \IR [/mm] soll ich zeigen dass gilt:
[mm] \limes_{n\rightarrow\infty} [/mm] sup [mm] (a_{n} [/mm] + [mm] b_{n} [/mm] ) [mm] \le \limes_{n\rightarrow\infty} [/mm] sup [mm] a_{n} [/mm] + [mm] \limes_{n\rightarrow\infty} [/mm]  sup [mm] b_{n} [/mm]

Ich hab irgendwie noch nicht mal ne Ahnung wie ich hier anfangen könnte, deswegen würde ich mich über einen Tipp wirklich seeeeeeehr freuen....

Ich weiß nur das gilt  [mm] \limes_{n\rightarrow\infty} [/mm] sup [mm] a_{n} [/mm]  = inf { x [mm] \in \IZ [/mm] : { n [mm] \in \IN [/mm] : [mm] a_{n} [/mm] > x } beschränkt } muss ich das vielleicht irgendwie nutzen für den Beweis?

Gruß Katrin

        
Bezug
Limes superior: Antwort
Status: (Antwort) fertig Status 
Datum: 09:53 Sa 10.12.2005
Autor: moudi


> Ich habe diese Frage noch in keinem anderen Internetforum
> gestellt.
>  
> HI!
>  

Hallo Katrin

> Ich habe ein Problem mit einem Beweis:
>  
> Für beschränkte Folgen [mm](a_{n})_{0}^{\infty}[/mm] ,
> [mm](b_{n})_{0}^{\infty}[/mm] in [mm]\IR[/mm] soll ich zeigen dass gilt:
> [mm]\limes_{n\rightarrow\infty}[/mm] sup [mm](a_{n}[/mm] + [mm]b_{n}[/mm] ) [mm]\le \limes_{n\rightarrow\infty}[/mm]
> sup [mm]a_{n}[/mm] + [mm]\limes_{n\rightarrow\infty}[/mm]  sup [mm]b_{n}[/mm]
>  
> Ich hab irgendwie noch nicht mal ne Ahnung wie ich hier
> anfangen könnte, deswegen würde ich mich über einen Tipp
> wirklich seeeeeeehr freuen....
>  
> Ich weiß nur das gilt  [mm]\limes_{n\rightarrow\infty}[/mm] sup
> [mm]a_{n}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

  = inf { x [mm]\in \IZ[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

: { n [mm]\in \IN[/mm] : [mm]a_{n}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

> x }

> beschränkt } muss ich das vielleicht irgendwie nutzen für
> den Beweis?

Der Limsup ist der grösste Häufungspunkt einer Folge, d.h. ist a der Limsup  einer Folge $a_n$, dann sind für jedes $\varepsilon>0$ nur endlich viele Folgenglieder grösser als $a+\varepsilon$.

Wenn also a und b die Limsups der beiden Folgen sind, dann gilt nur für endlich viele n, dass $a_n>a+\varepsilon$ und $b_n>b+\varepsilon$ und logischerweise ist dann nur für endlich viele n $a_n+b_n>a+b+2\varepsilon$ (und das gilt für alle $\varepsilon>0$!). Die letzte Aussage ist aber Aequivalent zur Aussage, dass der Limsup von $a_n+b_n\leq a+b$ ist, was zu beweisen war.

mfG Moudi

>  
> Gruß Katrin

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]