Limes superior, limes inferior < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 10:38 Mo 07.12.2009 | Autor: | Juliia |
Guten Morgen!
Ich habe eine Aufgabe und weiss nicht ob die richtig gemacht habe.
Aufgabe | 1) Sei [mm] (a_{n})_{n} [/mm] eine Folge. Zeigen Sie, dass [mm] \limes [/mm] sup [mm] (a_{n})_{n} [/mm] = [mm] \limes_{n\rightarrow\infty}( [/mm] sup { [mm] a_{k}|k\ge [/mm] n }).
2) Seien [mm] (a_{n})_{n} [/mm] und [mm] (b_{n})_{n} [/mm] nach unten beschränkte Folgen. Beweisen Sie die folgende Ungleichung:
[mm] \limes [/mm] sup [mm] (a_{n})_{n} [/mm] + [mm] \limes [/mm] inf [mm] (b_{n})_{n} \le \limes [/mm] sup [mm] (a_{n}+b_{n})_{n} \le \limes [/mm] sup [mm] (a_{n})_{n} [/mm] + [mm] \limes [/mm] sup [mm] (b_{n})_{n}.
[/mm]
Dabei sei [mm] a+\infty [/mm] = [mm] \infty [/mm] + a = [mm] \infty
[/mm]
Man kann den ersten Teil für den zweiten verwenden. |
Also, für 1) habe ich folgendes:
Behauptung:
a) Für b<a gilt: es gibt unendlich viele n [mm] \in \IN [/mm] mit [mm] (a_{n})_{n}> [/mm] b
b)Für c>a gilt: es gibt höchstens endlich viele n [mm] \in \IN [/mm] mit [mm] (a_{n})_{n} \ge [/mm] c
Beweies:
a) Sei h ein Häufungspunkt mit h> [mm] a+b_{2} [/mm] und sei [mm] \varepsilon= a-b_{ 2}. [/mm] Dann ist [mm] \varepsilon [/mm] > 0 und es gibt unendlich viele n [mm] \in \IN [/mm] mit [mm] |a_{n} [/mm] - h|< [mm] \varepsilon. [/mm] Für diese unendlich vielen n gilt dann [mm] a_{n}>h-\varepsilon [/mm] >a + [mm] b_{2}- [/mm] a- [mm] b_{2}
[/mm]
[mm] \Box
[/mm]
b) Falls es unendlich viele Folgenglieder mit [mm] a{2}\ge [/mm] c gibt, so haben diese nach Bolzano-Weierstrasse einen Häufungspunkt [mm] h_{2} [/mm] und er muss [mm] \ge [/mm] c sein. Das ist aber Widerspruch.
Jetzt zeige [mm] \limes_{n\rightarrow\infty} [/mm] sup [mm] \{a_{k}| k\ge n \} [/mm] = a
Sei [mm] \varepsilon [/mm] > 0 gegeben. Laut b) gibt es ein N [mm] \in \IN [/mm] mit [mm] a_{k} [/mm] < a + [mm] \varepsilon_{2} [/mm] für alle k [mm] \in \IN [/mm] . Daher gilt [mm] \limes_{n\rightarrow\infty} [/mm] sup [mm] \{a_{k}| k\ge n \} \le [/mm] a + [mm] \varepsilon_{2} [/mm] < a + [mm] \varepsilon [/mm] für alle n > N
Wegen a) gibt es zu jedem n [mm] \in \IN [/mm] ein k > n mit [mm] a_{k} [/mm] >a - [mm] \varepsilon. [/mm] Daher gilt [mm] \limes_{n\rightarrow\infty} [/mm] sup [mm] \{a_{k}| k\ge n \} \le [/mm] a - [mm] \varepsilon [/mm] für alle n [mm] \in [/mm] N
[mm] \Rightarrow [/mm] | [mm] \limes_{n\rightarrow\infty} [/mm] sup [mm] \{a_{k}| k \ge n \} [/mm] - a < [mm] \varepsilon [/mm] für alle n > N
[mm] \Rightarrow \limes_{n\rightarrow\infty} [/mm] sup [mm] \{a_{k}| k \ge n \} [/mm] = a
Kann das jemand überprüfen?
Und bei 2), da habe ich keine Ahnung...
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:53 Mo 07.12.2009 | Autor: | Juliia |
Kann mir jemand helfen????
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:20 Mi 09.12.2009 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|