www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteLimes von Folge mit Wurzel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Grenzwerte" - Limes von Folge mit Wurzel
Limes von Folge mit Wurzel < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Limes von Folge mit Wurzel: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 21:02 Mo 10.11.2008
Autor: wee

Aufgabe
Bestimme den Grenzwert der Folge [mm] \wurzel{n}(\wurzel{n+1}-\wurzel{n}) [/mm]

Hallo, bei der Aufgabe weiss ich bereits, dass die Folge gegen 1/2 konvergiert, aber der Beweis will mir nicht gelingen:

Sei [mm] \varepsilon [/mm] > 0. Dann gilt [mm] |\bruch{1}{2}- \wurzel{n}(\wurzel{n+1}-\wurzel{n})| [/mm] = [mm] |\bruch{1}{2}- \wurzel{n}(\wurzel{n+1}-\wurzel{n})* \bruch{(\wurzel{n+1}+\wurzel{n})}{(\wurzel{n+1}+\wurzel{n})}| [/mm] = [mm] |\wurzel{n}* \bruch{n+1-n}{(\wurzel{n+1}+\wurzel{n})}- \bruch{1}{2}| [/mm] = [mm] |\bruch{2\wurzel{n}-\wurzel{n+1}-\wurzel{n}}{2(\wurzel{n+1}+\wurzel{n})}| [/mm] = [mm] |\bruch{-\wurzel{n+1}+\wurzel{n}}{2(\wurzel{n+1}+\wurzel{n})}| [/mm]

da muss aber irgendwo ein Fehler drin stecken, denn der letzte Ausdruck ist ja 1/2 und nicht 0, bzw. kann nicht gegen eine Nullfolge nach oben abgeschätzt werden.

Ich bin für jede Hilfe dankbar

        
Bezug
Limes von Folge mit Wurzel: Antwort
Status: (Antwort) fertig Status 
Datum: 21:25 Mo 10.11.2008
Autor: schachuzipus

Hallo wee,

musst du das denn unbedingt mit dem [mm] $\varepsilon$-Kriterium [/mm] machen?

Die Folge bietet sich ja geradezu an, die Grenzwertsätze zu benutzen.

Ganz ähnlich deinen Umformungen erweitere [mm] $a_n=\sqrt{n}(\sqrt{n+1}-\sqrt{n})$ [/mm] mit [mm] $\sqrt{n+1}+\sqrt{n}$ [/mm]

Dann ein bisschen umformen, im Nenner [mm] $\sqrt{n}$ [/mm] ausklammern und du hast gezeigt, dass der GW [mm] $\frac{1}{2}$ [/mm] ist

Wenn du's unbedingt mit dem [mm] $\varepsilon$-Kriterium [/mm] machen musst, musst du deinen letzten (und richtigen) Ausdruck noch weiter nach oben abschätzen, um das gesuchte [mm] $N(\varepsilon)$ [/mm] zu konstruieren.

Dazu kannst du den Zähler vergrößern oder den Nenner verkleinern.

Dein letzter Ausdruck ist im übrigen nicht [mm] $\frac{1}{2}$ [/mm] und er strebt auch nicht dagegen, er muss ja gegen 0 streben, was er auch tut, schaue dir nochmal den Zähler genauer an

Aber eigentlich geht man solche Aufgaben immer mit den GW-Sätzen an, dazu sind sie ja da, man beweist einmal ihre Gültigkeit und kann sich so die mühseligen Abschätzungen ersparen ...


LG

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]