www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraLin. Unabh., Basen, Dimension
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Lin. Unabh., Basen, Dimension
Lin. Unabh., Basen, Dimension < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lin. Unabh., Basen, Dimension: Tipp
Status: (Frage) beantwortet Status 
Datum: 19:23 So 27.11.2005
Autor: Willi

Hey Leute, brauche ein wenig Hilfe. Danke schon mal im voraus.

Folgende Aufgabe:
Es sei t  [mm] \in \IR. [/mm] Welche Dimension hat der von {(1,2,t+2), (-1,t+1,t), (0,t,1)} aufgespannte Untervektorraum des  [mm] \IR-Vektorraums \IR^{3}? [/mm]
[Tipp: Vorsicht!]

Ich hab auf lin. unabhängigkeit überprüft. Kommt auch raus. Die Menge ist demnach auch eine Basis des  [mm] \IR-Vektorraums \IR^{3}. [/mm] Habe gesagt dass die Dimension dann 3 sein muss, wegen den 3 Basisvektoren. Stimmt das?
Bin verunsichtert durch den Tipp: Vorsicht, weil ich das gar nicht so schwer fand und auch das t bei der Überprüfung auf lineare Unabhängigkeit nicht stört. Hab ich was nicht beachtet? Bitte um Hilfe.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Lin. Unabh., Basen, Dimension: Antwort
Status: (Antwort) fertig Status 
Datum: 20:07 So 27.11.2005
Autor: felixf


>  Es sei t  [mm]\in \IR.[/mm] Welche Dimension hat der von
> {(1,2,t+2), (-1,t+1,t), (0,t,1)} aufgespannte
> Untervektorraum des  [mm]\IR-Vektorraums \IR^{3}?[/mm]
>  [Tipp:
> Vorsicht!]
>  
> Ich hab auf lin. unabhängigkeit überprüft. Kommt auch raus.

Sicher? Oder genauer gefragt: bist du dir sicher, dass das fuer jedes t der Fall ist?

> Die Menge ist demnach auch eine Basis des  [mm]\IR-Vektorraums \IR^{3}.[/mm]
> Habe gesagt dass die Dimension dann 3 sein muss, wegen den
> 3 Basisvektoren. Stimmt das?

Wenn die Vektoren tatsaechlich (fuer das fest gewaehlte t) linear unabhaengig sind, dann stimmt es.

Felix



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]