www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraLinear unabhängig
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Linear unabhängig
Linear unabhängig < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Linear unabhängig: Frage
Status: (Übungsaufgabe) Übungsaufgabe Status 
Datum: 14:29 Do 18.11.2004
Autor: nix-blicker

Seien [mm] v_{1},...,v_{k} \in \IQ^{n} [/mm] linear unabhängig über [mm] \IQ. [/mm]
Zeige: [mm] v_{1},...,v_{k} [/mm] sind linear unabhängig über [mm] \IR. [/mm]
(d.h. [mm] \forall \lambda_{1},...,\lambda_{k} \in \IR: \lambda_{1}v_{1}+...+\lambda_{k}v_{k}=0 \Rightarrow \lambda_{1}=...=\lambda_{k}=0) [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Linear unabhängig: Frage
Status: (Frage) beantwortet Status 
Datum: 15:16 Sa 20.11.2004
Autor: Nette

Hi!

Sorry, hab das etwas ungeschickt gemacht. Ich bezieh mich auf die Aufgabe von Nix-blicker.

Wir wissen doch, dass  [mm] \IQ \subset \IR, [/mm] das heißt doch auch, dass  [mm] \IQ^{n} [/mm] ein Untervektorraum von  [mm] \IR^{n} [/mm] ist, oder kann ich das nicht schließen?

Ich glaub, ich hab jetzt ne ziemlich falsche Lösung, aber ich schreib sie trotzdem mal:

Man kann ja sagen, dass [mm] v_{1},..., v_{n} [/mm] ne linear unabhängige Familie von    [mm] \IQ_{n} [/mm]  ist. Diese kann man erweitern zu einer Basis von  [mm] \IQ_{n}: (v_{1},..., v_{n},... v_{m}). [/mm]
Da     [mm] \IQ_{n} [/mm] Unterraum von   [mm] \IR^{n}... [/mm] kann man Basis von [mm] \IQ_{n} [/mm] erweitern zu Basis von  [mm] \IR^{n} [/mm] ...
bringt mich das weiter?? oder ist das vollkommener Blödsinn ??

Gruß
Annette

Bezug
                
Bezug
Linear unabhängig: Antwort
Status: (Antwort) fertig Status 
Datum: 09:49 Mi 24.11.2004
Autor: Julius

Hallo Annette!

Diese Lösung ist in der Tat ziemlich falsch. ;-)

> Wir wissen doch, dass  [mm]\IQ \subset \IR,[/mm] das heißt doch
> auch, dass  [mm]\IQ^{n}[/mm] ein Untervektorraum von  [mm]\IR^{n}[/mm] ist,
> oder kann ich das nicht schließen?

Das ist noch richtig.
  

> Ich glaub, ich hab jetzt ne ziemlich falsche Lösung, aber
> ich schreib sie trotzdem mal:

  

> Man kann ja sagen, dass [mm]v_{1},..., v_{n}[/mm] ne linear
> unabhängige Familie von    [mm]\IQ_{n}[/mm]  ist. Diese kann man
> erweitern zu einer Basis von  [mm]\IQ_{n}: (v_{1},..., v_{n},... v_{m}). [/mm]

[ok]
  

> Da     [mm]\IQ_{n}[/mm] Unterraum von   [mm]\IR^{n}...[/mm] kann man Basis
> von [mm]\IQ_{n}[/mm] erweitern zu Basis von  [mm]\IR^{n}[/mm] ...

Hier wird es falsch, denn das ist ja gerade zu zeigen, dass die Vektoren im [mm] $\IR^n$ [/mm] immer noch linear unabhängig sind.

Zu zeigen ist:

Wenn es für [mm] $v_1,v_2\ldots ,v_{n-1},v_n \in \IQ^n$ [/mm] eine nichttriviale Linearkombination

[mm] $\lambda_1 v_1 [/mm] + [mm] \lambda_2 v_2 [/mm] + [mm] \ldots [/mm] + [mm] \lambda_{n-1} v_{n-1} [/mm] + [mm] \lambda_n v_n=0$ [/mm]

mit reellen [mm] $\lambda_i$ [/mm] gibt, dann gibt es auch bereits so eine nichttriviale Linearkombination mit rationalen [mm] $\lambda_i$. [/mm]

Vielleicht verrät dir ja NixBlicker noch die Lösung zu dieser Übungsaufgabe, die Fälligkeit ist schließlich abgelaufen.

Liebe Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]