www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungLineare ALgebra
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra / Vektorrechnung" - Lineare ALgebra
Lineare ALgebra < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare ALgebra: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:00 Di 07.03.2006
Autor: brunobach

Aufgabe
Ich komme irgendwie nicht weiter !!!

Aufgabe :
Bestimme je eine Gleichung der von g und h aufgespannten Ebene E im Parameter-und Normalenform !!!
g: [mm] \begin{pmatrix} -2 \\ 4 \\ 7 \end{pmatrix} [/mm]  + r [mm] \begin{pmatrix} -3 \\ 2 \\ 6 \end{pmatrix} [/mm]
h: [mm] \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} [/mm] + r [mm] \begin{pmatrix} 3 \\ -2 \\ -6 \end{pmatrix} [/mm]  

Ich soll die Parameter-und die Normalform der Ebene berechnen, wie soll ich das machen....

ich brauchte dringend hilfe

gruß

bruno


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Lineare ALgebra: Antwort
Status: (Antwort) fertig Status 
Datum: 17:09 Di 07.03.2006
Autor: Fugre


> Ich komme irgendwie nicht weiter !!!
>  
> Aufgabe :
>  Bestimme je eine Gleichung der von g und h aufgespannten
> Ebene E im Parameter-und Normalenform !!!
>  g: [mm]\begin{pmatrix} -2 \\ 4 \\ 7 \end{pmatrix}[/mm]  + r
> [mm]\begin{pmatrix} -3 \\ 2 \\ 6 \end{pmatrix}[/mm]
> h: [mm]\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}[/mm] + r
> [mm]\begin{pmatrix} 3 \\ -2 \\ -6 \end{pmatrix}[/mm]
> Ich soll die Parameter-und die Normalform der Ebene
> berechnen, wie soll ich das machen....
>  
> ich brauchte dringend hilfe
>  
> gruß
>  
> bruno
>
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Hallo Bruno,

ich vermute, dass du ein Problem hast, weil die Geraden Parallelen sind.
Das ist aber kein Problem, als zweiten für die Parameterform benötigten
Richtungsvektor nimmst du einfach die Verbindung der beiden Aufpunkte.

Ich hoffe, dass ich dir helfen konnte, sollte noch etwas unklar sein, frag einfach.

Gruß
Nicolas

Bezug
                
Bezug
Lineare ALgebra: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:55 Di 07.03.2006
Autor: brunobach

Danke Nico !!!

Genau, die Geraden sind parallel. nach welcher Formel soll ich die Normalenform aufstellen ?


gruß
bruno



Bezug
                        
Bezug
Lineare ALgebra: Antwort
Status: (Antwort) fertig Status 
Datum: 13:25 Mi 08.03.2006
Autor: Quedrum

Ich nehme an, du hast die Parameterform schon, nach der Antwort von Fugre ist das auch kein Problem.

Jetzt musst du nur noch die Paramterform in Normalenform umwandeln:

Parameterform: [mm]\vektor{x1 \\ x2 \\ x3} = \vec{a} + r*\vec{b} + s*\vec{c}[/mm]

Normalenform: [mm]\vec{n}*(\vektor{x1 \\ x2 \\ x3}-\vec{a})=0[/mm]
Wobei [mm] \vec{n} [/mm] der Normalenvektor der Ebene ist, weißt du wie man den herausbekommt?

Gruß
Quedrum

Bezug
                                
Bezug
Lineare ALgebra: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:45 Mo 20.03.2006
Autor: brunobach

danke Quedrum !!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]